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ABSTRACT 	   With cognitive diagnostic analysis, each examinee receives a 
multidimensional skill profile expressing whether he/she is a master or 
nonmaster of each skill measured by the test. Fine-grained diagnostic feedback 
that facilitates teaching and learning can thus be provided to teachers and 
students. This study investigated cognitive diagnostic analysis as applied to the 
Michigan English Language Assessment Battery (MELAB) reading test. The 
Fusion Model (Hartz, 2002) was used to estimate examinee profiles on each 
reading subskill underlying the MELAB reading test. With data collected from 
multiple sources, such as the think-aloud protocol and expert rating, a tentative 
Q-matrix was initially developed to indicate the subskills required by each item. 
This Q-matrix was then validated via an application of the Fusion Model using 
data from the MELAB reading test. Four subskills were found to underlie the 
test, e.g., vocabulary, syntax, extracting explicit information, and 
understanding implicit information. Examinee skill mastery profiles were 
produced as the result of the cognitive diagnostic analysis. Finally, issues 
involved in the cognitive diagnostic analysis of reading tests were discussed, 
and areas for future research were also suggested.  
 
 
With traditional Item Response Theory (IRT) (Lord & Novick, 1968) modeling, 

examinees’ abilities are ordered along a continuum. Typically, a scaled score and/or a 
percentile rank are provided as the reported score. Results of scoring via Cognitive Diagnostic 
Models (CDMs) are different, however, in that examinees are assigned multidimensional skill 
profiles by being classified as masters versus non-masters of each skill involved in the test 
(DiBello, Roussos, & Stout, 2007). A typical procedure of the cognitive diagnostic analysis 
using CDMs is as follows: (i) identifying a set of skills involved in a test; (ii) demonstrating 
which skills are required for correctly answering each item in the test; (iii) estimating the 
profiles of skill mastery for individual examinees based on actual test performance data using 
the CDM; and (iv) providing score reporting and/or diagnostic feedback to examinees and 
other stakeholders (Lee & Sawaki, 2009b). Fine-grained diagnostic feedback can thus be 
provided to facilitate teaching and learning. 

Despite their relatively new status, CDMs have been actively applied to large-scale 
language tests. For instance, the Rule Space Model (Tatsuoka, 1983) has been applied to the 
TOEFL reading (e.g, Kasai, 1997; Scott, 1998), the TOEIC reading (Buck, Tatsuoka, & 
Kostin, 1997), the TOEIC listening (Buck & Tatsuoka, 1998), and the SAT Verbal (Buck et al., 
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1998). Recently, the Fusion Model (Hartz, 2002) has been used for diagnostic analysis of the 
TOEFL iBT reading and listening (Jang, 2005; Lee & Sawaki, 2009a; von Davier, 2005). 
Wang and Gierl (2007) have also applied the Attribute Hierarchy Method (AHM) (Leighton, 
Gierl, & Hunka, 2004) to SAT Verbal. Despite the challenge in understanding the content 
domains and the complexity of the psychometric modeling procedure, these studies have 
shown the potential of using CDMs with existing language tests.  

The Michigan English Language Assessment Battery (MELAB) is developed by the 
English Language Institute at the University of Michigan (ELI-UM) to evaluate advanced-
level English language competence of adult nonnative speakers of English who will use 
English for academic purposes in a university setting. It consists of three parts: Part 1 
composition, Part 2 a listening test comprising 60 multiple-choice items, and Part 3 a 
grammar/cloze/vocabulary/reading test with a total of 110 multiple-choice items. There is also 
an optional speaking test. A score for each part is reported, and the final MELAB score is also 
reported, which is the average of the scores of Part 1, Part 2, and Part 3. The speaking test 
score is not averaged into the Final MELAB score (ELI-UM, 2010).  

The reading section of the MELAB is designed to assess examinees’ understanding of 
college-level reading texts. It consists of four passages, each of which is followed by five 
multiple-choice items. According to the item-writing guidelines provided by the ELI-UM, the 
questions following each passage are intended to assess a variety of reading abilities, 
including recognizing the main idea, understanding the relationships between sentences and 
portions of the text, drawing text-based inferences, synthesizing, understanding the author’s 
purpose or attitude, and recognizing vocabulary in context (ELI-UM, 2003). At present, since 
reading is only part of the grammar/cloze/vocabulary/reading section, no score is provided 
specifically to indicate an examinee’s reading competence. Thus the diagnostic information 
on reading is rather limited. Gao (2006) developed a model of the cognitive processes used by 
examinees taking the MELAB reading test and validated the model with the tree-based 
regression (TBR) (Sheehan, 1997). This investigation has set a foundation for studying the 
diagnostic potential of the MELAB reading test.  

In order to maximize the instructional and washback values of the MELAB, it is useful 
to explore how the CDMs can be used with the MELAB reading test. The purpose of this 
study is thus to investigate the use of cognitive diagnostic analysis with the MELAB reading 
test so as to provide rich diagnostic information for examinees.  

 
Literature Review 

 
Overview of Cognitive Diagnostic Models  

With a CDM, examinees are assigned multidimensional skill profiles that classify 
them as masters or nonmasters of each skill involved in the test. Despite disagreement over 
the definition and scope of CDMs, Rupp and Templin’s (2008) review is regarded as the most 
detailed and comprehensive one in recent years. In this review, CDMs are defined as: 

 
probabilistic, confirmatory multidimensional latent-variable models with a 
simple or complex loading structure. They are suitable for modeling observable 
categorical response variables and contain unobservable (i.e., latent) categorical 
predictor variables. The predictor variables are combined in compensatory and 
noncompensatory ways to generate latent classes. (p. 226). 
 
A large number of CDMs have been proposed (62 models as listed by Fu & Li, 2007).  

One of the earliest methods for cognitive diagnostic analysis, Tatsuoka’s (1983) 
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groundbreaking work on the Rule Space Model classifies examinee item responses into 
categories of cognitive skill patterns. The Attribute Hierarchy Method (AHM) is an updated 
version of the Rule Space Model. It specifies the hierarchical relations among the attributes 
(or skills), whereas the Rule Space Model assumes a linear relationship. Besides these two 
models, which are mostly regarded as classification algorithms, most of the other CDMs are 
IRT-based latent class models (see Roussos, Templin, & Henson, 2007 for a full review). In 
the following section, some of the important characteristics of CDMs are discussed based on 
the definition given by Rupp and Templin (2008). 

To begin with, one salient characteristic of CDMs is multidimensionality. In 
unidimensional IRT models, examinee ability is modeled by a single general ability parameter. 
CDMs make it possible to investigate the mental processes underlying the observed response 
by breaking the overall ability down into different components. The number of dimensions 
depends on the number of skill components involved in the assessment.  

Second, CDMs are inherently confirmatory. The loading structure of a CDM is the Q-
matrix, i.e., a particular hypothesis about which skills are required for successfully answering 
each item. We will let k stand for the number of skills being measured, i for the number of 
items, and j for the number of examinees. Q = {qik}, where qik = 1 when skill k is required by 
item i, and qik = 0 when skill k is not required by item i. As shown in Table 1, skill A is 
required by item 1, whereas skill B and skill C are required by item 2.  

 
Table 1.  Sample Q-Matrix 
  Skill A Skill B Skill C 
Item 1 1 0 0 
Item 2 
… 

0 
… 

1 
… 

1 
… 

 
Third, CDMs allow for both compensatory and non-compensatory (or conjunctive) 

relationships among subskills, although noncompensatory models are currently more popular 
(Roussos, Templin, & Henson, 2007). With a compensatory model, a high level of 
competence on one skill can compensate for a low level of competence on another skill in 
performing a task. In contrast, with a non-compensatory model, a high level of competence on 
one skill cannot offset a low level of competence on another skill. Some of the most well-
known noncompensatory models are the Rule Space Model, the Attribute Hierarchy Method, 
the DINA (deterministic input noisy and) model of Haertel (1984, 1989, 1990), the NIDA 
model of Junker and Sijtsma (2001), the HYBRID Latent Class Model of Gitomer and 
Yamamoto (1991), and the Reparameterized Unified Model (RUM) or Fusion Model of 
Hartz(2002). The DINO (deterministic input noisy or) model of Templin and Henson (2006) 
and the NIDO (noisy input deterministic or) model of Templin, Henson, and Douglas (2006) 
are compensatory. 

Finally, unlike traditional IRT models which generally model continuous latent 
variables, the latent variables modeled in CDMs are discrete. Currently, most CDMs and the 
associated estimation procedures only allow for dichotomous latent variables (e.g., mastery vs. 
nonmastery), though theoretically the models can be extended to polytomous/ordinal levels, 
such as a rating variable with the values of “outstanding performance,” “good performance” 
“fair performance,” and “poor performance.” The MDLTM software (von Davier, 2006) for 
the General Diagnostic Model allows for dichotomous or polytomous latent variables; 
however, in practice most application studies using this software to date have modeled 
dichotomous latent variables in order to reduce the complexity of estimation.  

 



2120 H. Li 	  
	  

Introduction to the Fusion Model  
Among the large number of CDMs, the Fusion Model (Hartz, 2002; Roussos, DiBello, 

et al., 2007) is particularly promising for cognitive diagnostic analysis with reading tests. Also 
known as the Reparameterized Unified Model (RUM), the Fusion Model is an IRT-like 
multidimensional model that expresses the stochastic relationship between item responses and 
underlying skills as follows: 

                              !"#$=1'$,)$=*#∗  ,=1,-#,∗(1−'$,)  1#,23#  ()$)                        (1) 
Where, 
Xij is response of examinee j to item i (1 if correct; 0 if incorrect); and 
qik specifies the requirement for mastery of skill k for item i (qik = 1 if skill k is 
required by item i; qik = 0 if otherwise). 
There are two ability parameters, 'j and θj:. 
'j refers to a vector of cognitive skill mastery for examinee j for the skill k specified 
by the Q-matrix ('jk = 1 if examinee j has mastered skill k; 'jk = 0 if examinee j has not 
mastered skill k); and 
θj represents a residual ability parameter of potentially important skills unspecified in 
the Q-matrix in the range of -∞ to ∞.  
There are three item parameters, πi*, rik*, and ci: 
πi* is the probability that an examinee, having mastered all the Q-matrix skills 
required for item i, will correctly apply all the skills to solving the item i. πi* can be 
interpreted as the Q-matrix-based difficulty level of item i, ranging from 0 to 1; and 
rik* = P(Yijk = 1|αjk = 0)/P(Yijk = 1|αjk = 1) is an indicator of the diagnostic capacity of 
item i for skill k, ranging from 0 to 1. The more strongly the item requires mastery of 
skill k, the lower is rik*. rik* can be interpreted as the discrimination parameter of item 
i for skill k; and  
ci is an indicator of the degree to which the item response function relies on skills 
other than those assigned by the Q-matrix, ranging from 0 to 3. The lower the ci is, the 
more the item response function depends on residual ability θj. Therefore, ci is 
regarded as the Q-matrix completeness index.  

 
The biggest advantage of the Fusion Model over other CDMs is that it acknowledges 

the incompleteness of the Q-matrix and compensates for this by including the residual 
parameter ci, which represents all the other skills that have been used by the examinees but 
have not been specified in the Q-matrix (Roussos, DiBello, et al., 2007). As we do not have a 
full understanding of the cognitive processes underlying reading comprehension, it is 
impossible to be certain that we have identified all the skills necessary to correctly answer an 
item. The inclusion of the residual parameter admits this practical limitation.  

Furthermore, the Arpeggio program (Bolt et al., 2008) helps to modify the Q-matrix 
by removing nonsignificant item parameters, thereby facilitating the process of building a 
valid Q-matrix. As demonstrated in Hartz (2002), the Fusion Model uses a stepwise reduction 
algorithm to increase the estimation accuracy of the item parameters by eliminating 
noninformative parameters. Therefore, the Q-matrix can be refined iteratively. For instance, if 
the best possible rik* is 0.9, which indicates a lack of diagnostic capacity for discriminating 
the masters from the non-masters for skill k for item i, the corresponding Q-matrix entry can 
be dropped. Also, a ci parameter above 2.0 indicates that the skills required to successfully 
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answer the item are completely specified by the Q-matrix, and thus ci can be dropped  
in this case.  

Another advantage of the Fusion Model is that it not only evaluates examinee 
performance on the cognitive skills, but it also evaluates the diagnostic capacity of the items 
and the test. For instance, the rik* parameter indicates how strongly an item requires mastery 
of a skill. The more strongly the item requires mastery of skill k, the lower is rik*. If all the 
rik* values are very small, the test is considered to have a “high cognitive structure” (Roussos, 
Xu, & Stout, 2003).	   

The Fusion Model has been intensively studied in the past several years, and some 
new developments have emerged. For instance, Roussos, Xu and Stout (2003) studied how to 
equate with the Fusion Model using item parameter invariance; Bolt, Li, and Stout (2003) 
explored linking calibrations based on the Fusion Model, and Fu (2005) extended the Fusion 
Model to handle polytomously scored data using a cumulative score probability function 
(referred to as PFM-C). Templin (2005) developed a generalized linear mixed model for the 
proficiency space of examinee abilities (GLMPM) using the Fusion Model. Henson and 
Templin (2004) developed a procedure for analyzing National Assessment of Educational 
Progress (NAEP) data with the framework of the Fusion Model.  

Due to its relatively new status, the Fusion Model has not yet been widely used. The 
most exemplary study using the Fusion Model is by Jang (2005), who studied the reading 
comprehension part of the TOEFL iBT. Based on think-aloud protocols, expert rating, and 
content analysis, Jang identified nine primary reading skills involved in TOEFL reading and 
created a Q-matrix demonstrating the specific skills required by each item. Then she fitted the 
Fusion Model with the LanguEdge field test data of TOEFL iBT to estimate the skill mastery 
probability for 2,703 test takers. Another accomplishment of the study was profile reporting 
and the use of diagnostic reports. Before teaching a summer TOEFL class, Jang assessed 
some students via the Fusion Model and provided diagnostic feedback to each student. 
Following the class, each student was assessed again, with overall gains in skill mastery 
shown on the score report. The average change in posterior probability of mastery was an 
approximate gain of about 0.12, and approximately 85% of the students improved their 
performance on average over the skills. All the participating teachers reported that the 
diagnostic feedback was useful for increasing students’ awareness of their strengths and 
weaknesses in reading skills. Overall, Jang’s study has shown the great potential of using 
CDMs with existing language tests.  

A similar application of the Fusion Model was conducted by Lee and Sawaki (2009a). 
Data from a large-scale field test of TOEFL iBT reading and listening were used. Different 
from Jang’s study, only four skills were identified as underlying the TOEFL reading test. In 
addition to reading tests, the Fusion Model has been applied to other tests, such as the 
Preliminary SAT/National Merit Scholarship Qualifying Test (PSAT/NMSQT, Hartz, 2002), 
the ACT math (Hartz, 2002), an end-of-course high school geometry examination (Montero et 
al., 2003), a math test on mixed-number subtraction problems (Yan, Almond, & Mislevy, 
2004), the Iowa Tests of Educational Development (ITED, Schrader, 2006), and the Concept 
Assessment Tool for Statistics (CATS, Román, 2009). 

Overall, given the complexity of reading comprehension, the Fusion Model has great 
potential for conducting cognitive diagnostic analysis with reading tests. Therefore, in the 
current study, the Fusion Model was applied to the MELAB reading test to investigate its 
diagnostic potential.   
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Q-Matrix Construction and Validation  
 

The Q-matrix is an essential input for using the Fusion Model and any other CDMs. 
However, because the construct being tested and the underlying cognitive processes 
associated with it are usually not fully understood, establishing a Q-matrix, especially for an 
existing test, is a challenging task. In the present study, the following procedures were 
followed to construct and validate the Q-matrix for the MELAB reading test. 

 
Initial Q-Matrix Construction  

Based on information gathered from students’ verbal reports and from content experts, 
Gao (2006) developed a model of cognitive process underlying the MELAB reading test. 
Both the MELAB and TOEFL are English-language proficiency tests used by North 
American universities to determine whether to admit international students. Therefore, Gao’s 
cognitive model was compared to the TOEFL reading model constructed by Jang (2005).  

As shown in Table 2, the reading subskills of the MELAB and TOEFL fall into five 
categories: vocabulary, syntax, extracting explicit information, connecting and synthesizing, 
and making inferences. In the present study, this initial framework was further revised and 
validated with evidence from students’ verbal reports, expert ratings, and the extant literature. 
 
Table 2.  Summarizing Cognitive Models of Reading Built by Gao and Jang  
Category Gao (2006) Jang (2005) 
Vocabulary • Recognize and determine the meaning of specific words 

or phrases using context clues or 
phonological/orthographic/vocabulary knowledge 

• Context-dependent 
vocabulary 

• Context-independent 
vocabulary 

Syntax • Understand sentence structure and sentence meaning 
using syntactic knowledge 

 

• Syntactic and 
semantic linking 

• Negation  
Extracting 
explicit 
information  

• Locate the specific information requested in the 
question; scan the text for specific details, which 
includes (i) matching key vocabulary items in the 
question to key vocabulary items in the relevant part of 
the text, and (ii) identifying or formulating a synonym 
or a paraphrase of the literal meaning of a word, phrase, 
or sentence in the relevant part of the text 

• Textually explicit 
information 

 

Connecting 
and 
synthesizing 

• Understand the relationship between sentences and 
organization of the text using cohesion and rhetorical 
organization knowledge 

• Synthesize information presented in different sentences 
or parts of the text 

• Identify the main idea, theme, or concept; skim the text 
for gist 

• Summarizing 
• Mapping contrasting 

ideas into mental 
framework 

 

Making 
inferences  

• Speculate beyond the text, e.g., use background/topical 
knowledge 

• Draw inferences and conclusions based on information 
implicitly stated in the text 

• Inferencing 
• Textually implicit 

information  
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Think-Aloud Protocol  
To supplement the initial framework shown in Table 2, think-aloud protocols 

(Ericsson & Simon, 1993; Pressley & Afflerbach, 1995) were conducted in order to gather 
information about possible cognitive processes involved in responding to the MELAB items. 
In total, 13 ESL learners participated in the study, and their background information is shown 
in Table 3. 

 
 

Table 3.  Background Characteristics of Think-Aloud Participants 
Name First 

language 
(native 
country) 

Highest 
degree 
(where 
obtained) 

Major or field 
of study 

TOEFL 
score 

Self-rating of English 
reading ability 

Jin Chinese 
(China) 

Bachelor 
(China) 

Engineering  65 Basic 

Ted Chinese 
(China) 

Master 
(China) 

Education 85 Excellent  

Fei Chinese 
(China) 

Bachelor 
(China) 

Philosophy  N/A Between basic and 
good 

Yao Chinese 
(China) 

Bachelor 
(China) 

Educational 
technology 

85 Basic 

Ming Chinese 
(China) 

Bachelor 
(China) 

Computer 
science 

83 Good 

Hon Korean 
(Korea) 

Bachelor 
(Korea) 

Biochemical 
engineering  

N/A Basic 

Chika Japanese 
(Japan) 

Bachelor 
(Japan) 

Social welfare N/A Basic 

Afsar Persian 
(Iran) 

Master  
(Iran) 

Textile 
engineering 

88 Good 

Sabina Spanish 
(Colombia) 

Master  
(US.) 

Agricultural 
engineering 

110 Very good 

Katia Portuguese 
(Brazil) 

Master  
(US.) 

Environmental 
engineering  

N/A Very good 

Dora French 
(Morocco) 

High school N/A 85 Good 

Leon Spanish 
(Colombia) 

High school N/A N/A Basic 

Eva  Spanish 
(Spain) 

Master 
(Spain) 

History and 
musicology 

N/A Basic 

 
 
A brief training session was provided prior to the formal think-aloud activity. During 

the concurrent think-aloud session, the participant talked out what he/she was thinking while 
reading the passage and responding to the 20 reading items of the MELAB Form E. It was 
important not to distract the participant; therefore, only when a silence of 10 seconds or so 
had occurred, would I prompt the participant with questions such as “What are you thinking 
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now?” Then after finishing all five questions following one passage, the participant would 
recount the processes he/she had used. At this retrospective think-aloud session, I asked some 
questions mainly for clarification and further inquiry. The whole process was recorded using a 
digital voice recorder.  

I read through the transcribed verbal reports line-by-line in order to understand the 
reading skills involved. The initial framework was mostly confirmed by the data. First, it was 
difficult to distinguish whether students determined the meaning of specific words by using 
context clues or by using phonological/orthographic/vocabulary knowledge. Therefore, I 
decided to have one vocabulary skill as Sawaki, Kim, and Gentile (2009) did in their 
diagnostic analysis of the TOEFL reading. Second, syntactic knowledge was critical for 
responding to some items. In particular, long and complicated sentences with relative clauses, 
inversion of subject and verb, passive voice, subjunctive mood, and pronoun references 
seemed to be difficult for students. Third, in many cases, students needed the skill of 
understanding explicit information at the local level in order to find answers to the items. 
Most often, students read the items and then scanned the text searching for specific 
information relevant to the item. Comprehension usually inhered in a literal understanding of 
a sentence at the local level. The fourth category appeared to involve different levels of 
elements. In some cases, students only needed to read and connect information from adjacent 
sentences in a single paragraph. However, in other cases, students had to read across different 
paragraphs or the whole passage in order to identify the main idea of the passage. Only two 
items were found to test main ideas, and thus it was not practical to have a separate skill for 
main ideas. Therefore, a final decision was made to use the general skill designated as 
connecting and synthesizing. The fifth category pertained to making inferences, in which 
students went beyond the text in order to draw conclusions based on implicit information in 
the text. 

In addition to the above five skills, skills relating to metacognition, test-taking, and 
guessing were noticeable in the think-aloud verbal reports. For instance, some students read 
the questions before reading the passage or skipped the question when they were not able to 
answer a question upon first encountering it. Also, some students consistently guessed at or 
eliminated alternative choices. A residual skill category seemed to exist, which may include 
metacognition, test-taking, guessing, or any other skills (or strategies due to the potential 
overlapping between skills and strategies) not specified in the cognitive framework. 

With reference to Gao (2006) and Jang (2005), a coding scheme, as shown in Table 4, 
was built based on the cognitive framework and the think-aloud data. The think-aloud data 
helped to build the coding scheme, which was later used to guide the coding of the data. 
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Table 4.  Think-Aloud Protocols Coding Scheme 

Skills Elaboration Coding guide 
1.  
Vocabulary 

• Recognize and determine the meanings of 
specific words or phrases using context clues  

• Recognize and determine the meaning of 
specific words or phrases using 
phonological/orthographic/vocabulary 
knowledge  

•Understanding the word is 
critical for comprehension. 

•The words are usually 
infrequently used.  

 

2.  
Syntax 
 

• Understand sentence structure and sentence 
meaning using syntax, grammar, punctuation, 
parts of speech, etc. 

 

• Understanding the sentence is 
critical for comprehension, and 
its structure is complex (for 
instance, inversion, relative 
clauses, passive voice, 
pronoun references). 

3. 
Extracting 
explicit 
information  

 

• Match lexical and/or syntactic information in 
the question to those in the relevant part of the 
text 

• Identify or formulate a synonym or a 
paraphrase of the literal meaning of a word, 
phrase, or sentence in the relevant part of the 
text 

• Information is explicitly 
stated at local level, usually 
in one sentence.  

•The items usually ask for 
specific details, and only 
literal understanding is 
necessary to answer the 
question. 

4.  
Connecting  
and 
synthesizing  
 

• Integrate, relate, or summarize the information 
presented in different sentences or parts of the 
text to generate meaning  

• Understand the relationship between sentences 
and organization of the text using cohesion and 
rhetorical organization knowledge 

• Recognize and evaluate relative importance of 
information in the text by distinguishing major 
ideas from supporting details 

•The information is stated in 
different places of the text. 

• Answering the question 
involves connecting two or 
more ideas or pieces of 
information across sentences 
or paragraphs, but it is not 
necessary to go much beyond 
the text. 

5.  
Making  
inferences  

• Speculate beyond the text, e.g., use 
background/topical knowledge 

• Draw inferences and conclusions or form 
hypotheses based on information implicitly 
stated in the text 

• Information is implicitly stated.  
• It is necessary to make further 

inferences based on other 
information from text and/or 
on background knowledge.   

6.  
Residual  
skills 

  Including but not limited to: 
• Metacognitive skills (e.g., adjusting reading 

speed, decision to skip/skim/carefully read 
materials, decision to reread materials, attempt 
to pinpoint confusion, etc.) 

• Test-taking skills 
• Guessing  

• All the skills (or strategies) not 
explicitly specified in the 
cognitive framework belong to 
this category.  

• Residual skills are affiliated 
with all the items, and thus it is 
not necessary to code. 
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Expert Rating  
Four experts were invited to identify the skills required by each of the 20 items in the 

MELAB Form E. All were advanced doctoral students in education or applied linguistics and 
had experience in teaching English reading to ESL students. Their qualifications and 
experience are summarized in Table 5. Each expert was provided with the four MELAB 
reading passages, a one-page introduction to the MELAB, a coding scheme, and a coding 
form. In order to acquaint the experts with the rating task, a training session was held prior to 
the formal rating.  

 
 

Table 5.  Experts’ Background Information 
 Beck Elena Lucy Adriana 
Native language  Uzbek  Spanish English Spanish 
Education Master’s degree 

in TESL, PhD 
candidate in 
applied 
linguistics 

Master’s degree 
in TESL, PhD 
candidate in 
applied 
linguistics 

Master’s degree 
in TESL, PhD 
candidate in 
educational 
psychology 

Master’s degree 
in educational 
psychology, PhD 
candidate in 
adult education 

ESL teaching 
experience 

5 years  8 years 3 years 3 years 

 
 
After training, each expert read the passages and performed the rating task 

independently. They identified the skills for each item and also made annotations about the 
evidence on which they based their assessments. When they had finished rating each passage, 
the experts convened and compared their ratings. Spearman rho was calculated to indicate the 
agreement between the ratings given by each expert. As shown in Table 6, the correlations 
between the four experts were all statistically significant at the 0.01 level. The values of 
spearman rho were all higher than 0.30, indicating moderate agreement. I also observed that 
the experts showed more agreement as they proceeded with the rating task. 
 
 
Table 6.  Inter-Rater Agreement 
 Beck Elena Lucy Adriana 
Beck 1.000 0.319** 0.393** 0.561** 
Elina  1.000 0.396** 0.465** 
Lucy   1.000 0.332** 
Adriana     1.000 
Note. ** Indicates significant at the 0.01 level (2-tailed). 
 
 
Initial Q-Matrix  

With reference to the coding scheme, an initial Q-matrix was constructed based on 
evidence from the think-aloud verbal report and the expert rating. However, a frequently 
encountered problem here is that students’ verbal reports may not agree with expert rating 
(Gierl, 1997; Jang, 2005; Zappe, 2007). When this discrepancy occurred in the present study, 
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the think-aloud verbal reports were regarded as the primary evidence, because the verbal 
reports more or less captured the real-time reading process and thus were regarded more 
reliable and authentic. The value of expert rating, however, should not be underestimated, as 
it provides important evidence from a different perspective. Furthermore, when it was 
difficult to determine whether a certain skill should be retained for an item, the skill was 
usually retained. This is because the follow-up Fusion Model calibration would provide 
evidence concerning the importance of the skill for the item; that is, if the calibration showed 
the skill to be inconsequential, it could be dropped at this later point.  

The initial Q-matrix for the MELAB items is shown in Table 7. The number 1 
indicates that the skill is required by the item, whereas 0 indicates that the skill is not required 
by the item. The residual skills were thought to be affiliated with each item; their coding is 
thus not listed in the table.  
 
 
Table 7.  Initial Q-Matrix  
Item  Skill 1 

(vocabulary) 
Skill 2 
(syntax) 

Skill 3  
(extracting explicit 
information) 

Skill 4 
(connecting and 
synthesizing) 

Skill 5 
(making 
inferences) 

1 1 1 0 1 0 
2 1 0 1 0 0 
3 0 0 0 1 0 
4 0 0 1 0 0 
5 1 1 0 0 1 
6 1 0 1 0 0 
7 0 1 1 0 0 
8 1 0 0 1 0 
9 0 0 1 0 0 
10 1 0 0 0 1 
11 0 0 1 0 0 
12 1 1 1 0 0 
13 0 0 0 1 0 
14 1 0 0 1 0 
15 1 1 0 0 1 
16 1 1 1 0 0 
17 0 1 0 1 0 
18 0 1 1 0 0 
19 1 0 0 1 0 
20 0 0 1 0 0 

 
 
Empirical Validation of the Q-Matrix  

Response data from 2,019 examinees to each of the 20 reading items of the MELAB 
Form E were used for the empirical validation. There were no missing data because data from 
examinees skipping one or more of the items (about 3% of the total number of examinees) 
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had been excluded. They were excluded because these examinees may have simply been 
guessing or may have run out of time and thus were not instigating the processes required by 
item solution (Plough, personal communication, March 25, 2010). The data set were analyzed 
with Arpeggio, and the following procedures were used. 

 
MCMC Convergence Checking 

The software Arpeggio uses a Bayesian approach with a Markov Chain Monte Carlo 
(MCMC) algorithm. The MCMC estimation provides a jointly estimated posterior distribution 
of both the item parameters and the examinee parameters, which may provide a better 
understanding of the true standard errors involved (Patz & Junker, 1999). However, MCMC 
convergence is difficult to achieve and also difficult to judge (Sinharay, 2004). 

In the present study, MCMC convergence was mainly evaluated by visually 
examining the time–series chain plots and density plots. A time–series chain plot provides a 
graphical check of the stability of the generated parameter values, whereas a density plot 
checks graphically if the mean of a parameter has stabilized. Other criteria, such as the 
Heidelberg–Welch diagnostic and the Geweke Z, were also examined. The Heidelberger–
Welch diagnostic method examines the last part of a chain to evaluate the null hypothesis that 
the generated Markov chain has stabilized. A one-sided test is used, and small p-values (such 
as < 0.05) indicate non-convergence.	  The Geweke Z takes two non-overlapping parts (usually 
the first 0.1 and last 0.5 proportions) of the Markov chain and compares the means of both 
parts, using a difference of means test to see if the two parts of the chain are from the same 
distribution. Parameters with |z| > 2 indicate non-convergence	  (Ntzoufras, 2009). 

With the Fusion Model, MCMC chains of simulated values are generated to estimate 
all the parameters. Each time point (or step) in the chain corresponds to a set of simulated 
values for the parameters. After a sufficient number of steps, i.e., the burn-in phase of the 
chain, the remaining simulated values will approximate the desired Bayesian posterior 
distribution of the parameters. Typically, the results of the initial thousands of steps or values 
are thrown out, and these thrown-out values are called those of the “burn-in” period (Sinharay, 
2004). After several trials, a chain length of 60,000 and burn-in steps of 30,000 was found to 
be appropriate. 

Visual examination of the plots showed that the majority of parameters achieved 
excellent convergence. However, the time–series chain plots and density plots for some 
parameters, such as pk5 (proportion of masters of skill 5 in the population), r5.1 (the diagnostic 
capacity of item 5 to skill 1), r5.5, r8.1, r10.1, r10.5, r15.1, r15.2, and r19.1, showed moderate 
fluctuation. As shown by the examples in Figure 1, the time–series chain plots for r5.1 showed 
some fluctuations that may indicate non-convergence, whereas the time–series chain plots of 
r4.3 were smooth and stable, indicating excellent convergence.  

 
 

Time–series chain plot of r5.1                    Density plot of r5.1 
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Time–series chain plot of r4.3                     Density plot of r4.3 

 
Figure 1.  Sample Time–Series Chain Plots and Density Plots. 

 
 
Some numerical criteria were also used to help judge MCMC convergence. As shown 

in Table 8, the Heidelberg–Welch diagnostic indicated that all the parameters except c8.1 
achieved good convergence. However, the Geweke Z showed that 18 of the 79 parameters 
had a z value out of the range of -2 and 2, indicating non-convergence. Among those 
parameters, eight had z values out of the range of -3 and 3.  

The potential non-convergence of pk5 was worrisome, because the pk parameters are 
one of the priors in the Fusion Model calibration and thus the non-convergence of pk5 may 
influence the estimation of other parameters. It is also important to note that many of the 
potentially problematic parameters here are affiliated with skill 5 (making inferences) or items 
that require skill 5, namely items 5, 10, and 15. In conclusion, the overall MCMC 
convergence for all parameters was acceptable but not excellent, and the validity of 
explicating skill 5 from the MELAB reading test seems to require further examination. 

 
 

Table 8.  Summary of MCMC Convergence Check 
 Criteria  Problematic parameters 
Time–series 
chain plots and 
density plots 

Obvious trends 
indicate non-
convergence 

pk5, r5.1, r5.5, r8.1, r10.1, r10.5, r15.1, r15.2, r19.1 

Heidelberg–
Welch 
Diagnostic 

p < 0.05 indicates 
non-convergence 

c8.1 (p = 0.0475) 

Geweke Z |z| > 2 indicates 
non-convergence 

pk5 (z = 6.09)        π5.1 (z = - 3.75)     π10.1 (z = - 3.18) 
r2.1 (z = 2.22)        r2.3 (z = - 2.26)      r5.1 (z = - 3.1) 
r5.5 (z = 2.56)        r10.1 (z = - 4.6)       r12.1 (z = 2.77) 
r12.3 (z = - 2.47)    r14.1 (z = 4.05)        r14.4 (z = -2.19) 
r15.1 (z = 2.16)       r15.5 (z = - 3.24)     r20.3 (z = 3.16) 
c14.1 (z = - 2.56)    c16.1 (z = - 2.23)     c20.1 (z = - 2.75) 

 
 

Refining the Initial Q-Matrix  
In the initial Q-matrix, only three items were assigned to skill 5, whereas 11 items 

were assigned to skill 1, 8 items to skill 2, 10 items to skill 3; and 7 to skill 4 (see Table 7 for 
details). Thus, the information pertaining to skill 5 was probably insufficient for estimation. 
Therefore, I decided to combine skill 4 (connecting and synthesizing) and skill 5 (making 
inferences) to create a new skill 4: “understanding implicit information through connecting 
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ideas and making inferences.” Hereafter, this new skill 4 is referred to as “understanding 
implicit information.”  

High values of r and c parameters indicate possibility for model simplification (Hartz, 
2002; Roussos, DiBello, et al., 2007). It has been recommended that an r parameter larger 
than 0.9 should be removed from the Q-matrix, as this indicates that the affiliated skill is not 
significantly important for the item. Also, when c is larger than 2, the skills required to 
successfully answer the item are completely specified by the Q-matrix, and thus c can be 
dropped (Hartz, 2002). A more parsimonious model with few parameters is usually preferred. 
However, whether to drop a certain Q-matrix entry depends on both statistical criteria and 
substantive knowledge. First, the seven large c parameters were dropped from the Q-matrix 
one at a time, as they did not greatly change the Q-matrix structure. Then five of the large r 
parameters were dropped from the Q-matrix one at a time. The remaining three large r 
parameters, namely r4.3, r9.3, and r13.4 were retained because the skill affiliated with each of 
these was the only one identified for the item.  

The convergence of the Fusion Model calibration using the Q-matrix thus refined was 
reevaluated. The time–series chain plots and density plots of the parameters did not show 
noticeable trends or fluctuations. All the parameters met the Heidelberg–Welch diagnostic 
and Geweke Z convergence criteria. 

 
Model Fit  

Just as with any other statistical models, only when the Fusion Model fits the data, the 
interpretation of the estimated parameters is meaningful. There are two main approaches to 
assessing model fit with the Fusion Model: comparing the model-predicted values to the 
observed values and evaluating the characteristics of the skill mastery classification. In the 
following, the model fit of using the initial Q-matrix and the refined Q-matrix were compared 
based on different evidence. However, for most of the model-fit judgment discussed below, 
there are no commonly agreed cut-off criteria, and thus only descriptive model fit evidence is 
presented. 

The first index is the residual between the observed and model-predicted p-values 
across items. A p-value refers to the proportion of examinees who respond correctly to the 
item. The predicted p-value of each item was derived based on the result of the Fusion Model 
calibration. The chart at the top of Figure 2 shows the observed p-value versus the predicted 
p-value for each item when the initial Q-matrix was used, whereas the chart at the bottom 
shows the observed p-value versus the predicted p-value when the refined Q-matrix was used. 
The two lines were very close or overlapped for most of the items. Table 9 also shows that the 
mean and mean square error of the difference between the observed and predicted p-value 
were negligible. This small difference provides evidence for good model fit.  
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Figure 2.  Observed Versus Predicted P-Values Across Items. 

 
 
Table 9.  Comparison of Observed and Predicted P-values Across Items 
Difference between observed and predicted p-values  Initial  

Q-matrix 
Refined  
Q-matrix 

Mean -0.006 -0.006 
Mean square error  0.000  0.000 

 
 
Second, the observed and predicted total scores across examinees were also compared 

to further judge model fit. The observed total scores were calculated by adding up all the item 
scores for each examinee, whereas the predicted total scores were provided as a result of the 
Fusion Model calibration. As shown in Table 10, when both the observed and predicted total 
scores for individual examinees were standardized as z-scores, the mean of the difference 
between the observed and predicted total scores was zero whether the initial or the refined Q-
matrix was used. The mean square error was a little bit smaller when the initial Q-matrix was 
used, probably because the initial model had more parameters. This has been a common 
phenomenon because adding more parameters to the model always improves overall model 
fit; however, the question is whether the improved model fit is worthy given that the model is 
more complex than before (Kline, 2005). The purpose is to find a parsimonious model that 
still fits the data reasonably well.  
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Table 10.  Comparison of Observed and Predicted Total Score across Examinees 

Difference between observed and predicted total score Initial  
Q-matrix 

Refined  
Q-matrix 

Mean  0.000 0.000 
Mean square error  0.070 0.080 

 
The scatter plots of the observed and predicted total scores for all 2,019 examinees are 

shown in Figure 3. The top chart refers to the initial Q-matrix, and the bottom chart refers to 
the refined Q-matrix. The observed and predicted total scores correlated very well in both 
charts. The correlation between the observed and predicted total scores was 0.960, regardless 
of whether the initial Q-matrix or the refined Q-matrix was used. However, both charts 
indicate that examinees at the higher end appeared to have been underestimated in terms of 
their total scores. This misfit has also been observed in previous studies (Jang, 2005; Roman, 
2009), as the categorical CDMs may overestimate the scores for the lowest-scoring examinees 
and underestimate the scores of the highest-scoring examinees. Because the purpose of the 
Fusion Model calibration is to estimate categorical skill mastery status, the slight 
underestimation of total scores at the higher end may not substantively influence the 
classification result (Roussos, DiBello, et al., 2007). 

 

 

 
Figure 3.  Scatter Plots of the Observed and Predicted Total Scores. 
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ImStats computes the observed proportion-correct score for item masters and item 
non-masters on an item-by-item basis. An item master is an examinee who has mastered all 
the skills required by the item, and an item non-master is an examinee who has not mastered 
at least one of the skills required by the item. Informally, a substantial difference between the 
proportion-correct scores of these two groups indicates a high degree of model fit or internal 
consistency, as the membership of item masters or non-masters is based on the examinee skill 
classification. Therefore, ImStats is also used as internal validity evidence, because it uses the 
test data itself to help verify the authenticity of the model (DiBello, Roussos, & Stout, 2007).  

In Figure 4, the top chart shows the proportion-correct scores of item masters and non-
masters when the initial Q-matrix was used, and the bottom chart shows the proportion-
correct scores of item masters and non-masters when the refined Q-matrix was used. Despite a 
lack of consensus on the criteria according to which the difference should be measured, both 
charts show substantial difference between the proportion-correct scores of the item masters 
and those of the non-masters. As indicated in Table 11, the average proportion-correct score 
of the item masters was around 0.9 in both cases, whereas the average proportion-correct 
score of the item non-masters was less than 0.45. To summarize, the differences, as shown in 
Figure 4 and Table 11, provide important evidence for good model fit. 

 
	  

	  
	  

	  
Figure 4.  Proportion-Correct Scores of Item Masters and Non-Masters. 
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Table 11.  Comparison of Average Proportion-Correct Scores of Masters and Nonmasters  

Statistic Initial  
Q-matrix 

Refined  
Q-matrix 

Mean proportion-correct score of item masters 0.905 0.888 
Mean proportion-correct score of item nonmasters 0.417 0.416 
 
 

Based on the above model-fit evidence, the model fits the data reasonably well 
regardless of whether the initial Q-matrix or the refined Q-matrix was used. In other words, 
when the more parsimonious Q-matrix was used, the model fit was not noticeably worse. For 
the sake of model parsimony, the refined Q-matrix, therefore, was adopted as the final Q-
matrix for the MELAB reading test. 

 
Diagnostic Results 

 
With the recommended Q-matrix and the item response data of the 2,019 examinees, 

the Fusion Model calibration was conducted using Arpeggio software. The estimated item 
parameters and examinee skill mastery status are reported as follows.  

 
Item Parameters 

The item parameters are shown in Table 12, and the shaded cells indicate the entries or 
parameters that have been dropped. The remaining cells describe the item parameters that 
give detailed information about the cognitive structure and the diagnostic capacity of the 
MELAB reading test. For comparison, the last column shows the proportion-correct score of 
the item.  

 
 

Table 12.  Item Parameters of the Final Calibration 
Item  π   r*1  r*2  r*3  r*4  C Proportion-correct score 
1 0.860 0.710                0.849 1.649 .548 
2 0.984 0.853                 0.868 .648 
3 0.972    0.852 1.296 .724 
4 0.993   0.958  1.113 .761 
5 0.752 0.495   0.729* 1.701 .365 
6 0.765 0.880  0.653  1.333 .471 
7 0.983   0.852  1.266 .736 
8 0.885 0.579   0.815 1.020 .436 
9 0.985   0.918  1.519 .807 
10 0.643 0.237   0.821*  .265 
11 0.872   0.868  1.025 .618 
12 0.971 0.757 0.828                 1.337 .600 
13 0.995    0.914 1.154 .746 
14 0.986 0.766   0.852 0.762 .541 
15 0.723 0.804 0.697  0.801*  .436 
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16 0.936 0.854 0.635 0.441   .448 
17 0.619  0.414  0.753  .318 
18 0.967  0.438 0.712   .512 
19 0.976 0.861   0.254  .454 
20 0.954   0.306   .558 

Note. Items 5, 10, and 11 were originally affiliated with skill 5 (making inferences). 
 
 

The π parameter is the probability that an examinee, having mastered all the Q-matrix-
required skills for item i, will correctly apply all these skills to solving item i. The average π 
parameter in the table was 0.891, indicating that the identified skills for the items were 
generally adequate and reasonable. However, the π parameter for item 17 was as low as 0.619. 
This indicates that the probability that examinees would correctly answer item 17 was only 
0.619, given that they had acquired the required skills of syntax and understanding implicit 
information. Item 17 was a rather difficult item. As shown in Table 12, the proportion-correct 
score for items 17 was only 0.318, whereas the average proportion-correct score for all the 
items was 0.550. This is probably one of the reasons that the π parameter for item 17 was low. 
In general, the overall values of the π parameters are reasonable and satisfactory regarding the 
quality of the Q-matrix. 

The r parameter is an indicator of the diagnostic capacity of item i for skill k, ranging 
from 0 to 1. The more strongly the item requires mastery of skill k, the lower is r. For 
example, r10.1 was 0.237. This indicates that the probability of an examinee correctly 
answering item 10 when he/she has not mastered skill 1 (vocabulary) is 0.237 times of the 
probability of correctly answering item 10 when skill 1 has been mastered. This shows that 
vocabulary is a very important skill for item 10. However, some r parameters were rather 
large. For instance, r7.3 was 0.852. This indicates that the probability of correctly answering 
item 7 when skill 3 (extracting explicit information) has not been mastered is 0.852 times of 
the probability of correctly answering item 7 when skill 3 has been mastered. In other words, 
it does not matter much whether examinees have mastered skill 3 or not. As shown in Table 
12, item 7 was a rather easy item with a proportion-correct score of 0.736. This is probably 
why its diagnostic capacity was limited. Overall, the r parameters of the MELAB items were 
on the higher end, indicating that the diagnostic capacity of the MELAB reading test is low. 
This is probably because the MELAB reading test is not built for diagnostic purposes.  

The c parameter is an indicator of the degree to which the item-response function 
relies on skills other than those assigned by the Q-matrix. The lower the c, the more the item 
depends on residual ability. Some researchers (e.g., Jang, 2005; Roussos, DiBello, et al., 
2007) have reported that when c parameters are included, the residual part of 23#()$) might 
dominate the model. If that occurs, most of the pk parameters will be very large, which 
artificially makes nearly everyone a master of most of the skills. In addition, the c parameters 
themselves sometimes cannot converge. The outcome of the Fusion Model was examined, 
and this was not found to be the case in the present study. All the pks were less than 0.5, which 
indicates that fewer than half the examinees were masters of the skills. Also, all the c 
parameters had good convergence. The only concern is that eight r parameters were larger 
than 0.9. In order to examine whether this was because the c parameters had “soaked up” the 
variance, the Fusion Model was run with all c parameters fixed. It was found that the 
convergence was poor when c was fixed, and also the values of the r parameters were not 
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noticeably smaller as a result of fixing c. In addition, the cognitive framework built for the 
MELAB reading test involves a residual part. Therefore, keeping the c parameter and using 
the full Fusion Model is statistically and theoretically sound. As a result, only seven large c 
parameters were dropped for model parsimony, while the rest of the c parameters were 
maintained in the Q-matrix.  
 
Examinee Skill Mastery Status  

Continuous posterior probability of mastery (PPM) indicates the probability that an 
examinee is a master of the skill being studied. As shown in Figure 5, most of the examinees 
had either a very high or very low PPM, so that they could easily be classified as masters or 
non-masters of the skills.  

 
 

       
 

        
Figure 5.  Continuous Posterior Probability of Mastery (PPM). 
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In addition, a dichotomous mastery/non-mastery status can be accomplished by using 
a cut-off point of 0.5 (Lee & Sawaki, 2009a). If PPM > 0.5, the examinee is a master of the 
skill, and if PPM < 0.5, the examinee is a non-master of the skill. As shown in Figure 6, about 
25.6% of examinees were masters of skill 1 (vocabulary), 28.7% were masters of skill 2 
(syntax), 40.1% were masters of skill 3 (extracting explicit information), and 32.3% were 
masters of skill 4 (understanding implicit information). Sometimes, a more refined 
polytomous status can be determined by using 0.4 and 0.6 as cut-off points (Jang, 2005). 
However, in the present study, only less than 7% of examinees had PPMs between 0.4 and 0.6 
for all the four skills; therefore, a more refined polytomous status would not have changed the 
classification results much. 

 
 

 
Figure 6.  Categorical Mastery Status. 

 
 

These results are relatively congruent with my expectation. Skill 1 (vocabulary) 
seemed to be the most difficult skill for MELAB examinees, which agreed with the consistent 
finding that lack of vocabulary is the major obstacle in reading comprehension (Garc#4, 
1991). A rule of thumb is that readers need to know 95% of the words in a text to read it 
successfully (Grabe, 2009); however, this is rarely the case for ESL learners. In addition, in 
accord with the literature on reading, the present study found that skill 4 was more difficult 
than skill 3. Skill 3 is that of extracting explicitly stated information at a local level, whereas 
skill 4 refers to understanding implicit information through connecting ideas and making 
inferences. Thus, skill 4 requires more cognitive processes and is more challenging than skill 
3. 

With four skills involved in the test, examinees could have as many as 16 (i.e., 24) skill 
profile patterns, as shown in Table 13, in which 1 indicates mastery of the skill and 0 indicates 
non-mastery of the skill. For instance, a skill profile of 0101 indicates that the examinee is a 
non-master of skill 1 (vocabulary), a master of skill 2 (syntax), a non-master of skill 3 
(extracting explicit information), and a master of skill 4 (understanding implicit information). 
As illustrated in Table 13, about half of the examinees were non-masters of all four skills, i.e., 
their profiles showed 0000, and about 16% were masters of all four skills, i.e., their profiles 
showed 1111. The third largest number of examinees had the profile of 0010, indicating that 
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they were only masters of skill 3 (extracting explicit information). This was to be expected, as 
skill 3 was found to be the least challenging in the think-aloud protocols.  

 
 

Table 13.  Skill Mastery Patterns 
Skill mastery patterns Frequency Percentage 
0000 1042 51.61% 
1111 324 16.05% 
0010 136 6.74% 
0111 96 4.75% 
0011 70 3.47% 
0110 60 2.97% 
1011 58 2.87% 
0001 52 2.58% 
1110 37 1.83% 
1000 31 1.54% 
1010 29 1.44% 
0100 24 1.19% 
0101 22 1.09% 
1001 22 1.09% 
1101 9 0.45% 
1100 7 0.35% 

 
 

Figure 7 illustrates a sample skill profile report for an MELAB examinee about his/her 
mastery of the reading skills. The horizontal axis shows the PPMs of each skill, and a vertical 
line indicates the cut-off point of 0.5. As can be seen, this examinee is a master of skills 
1(vocabulary), 3(extracting explicit information), and 4 (understanding implicit information), 
but not skill 2 (syntax). Providing such a skill profile report can help the examinee identify 
his/her weakness, and thus more efficiently facilitate the learning and teaching of reading 
comprehension.  

 
  

 
Figure 7.  Sample Skill Profile. 
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Discussion 
The present study yielded useful diagnostic information to MELAB examinees than 

are currently available to. However, cognitive diagnostic modeling is new to the field of 
language assessment, and many issues need further investigation.  

 
Retrofitting the MELAB Reading Test with CDMs 

As suggested by Gierl and Cui (2008, p. 265), “a cognitive model would be developed 
first to specify the knowledge and skills evaluated on the test and then items would be created 
to measure these specific cognitive skills.” However, currently very few large-scale tests are 
designed with a cognitive diagnostic purpose; therefore, in most application studies, the Q-
matrices have been constructed retrospectively for existing tests. Retrofitting the MELAB 
reading test has produced more diagnostic information than if only a total score is provided. It 
also deepens our understanding of the MELAB reading test so as to accumulate empirical 
evidence for further diagnostic assessment and test development. However, retrofitting with 
preexisting tests involves a time-consuming process of Q-matrix construction, which may 
yield results that are not optimal. 

A noticeable indeterminacy involved in the retrofitting is the grain size of the subskills 
(Lee & Sawaki, 2009b). The more skills identified, the richer the diagnostic information that 
can be provided; however, including a high number of skills places a stress on the capacity of 
statistical modeling, given the fixed length of the test. Two major factors considered were the 
modeling capacity and the meaningfulness of the skill mastery profile. Gao (2006) suggested 
that ten reading skill components underlie the MELAB test. However, given the fact that this 
test consists of only 20 items, the present study only involved five subskills: vocabulary, 
syntax, extracting explicit information, synthesizing and connecting, and making inferences. 
However, only three items were initially identified as requiring skill 5 (making inferences). In 
order to have more information for parameter estimation, skill 5 (making inferences) and skill 
4 (connecting and synthesizing) were collapsed into the more general skill of understanding 
implicit information through connecting ideas and making inferences. One important 
implication for the test developers is, therefore, to keep balance between the number of 
subskills being measured and the numbers of items in the test, i.e. more items should be 
included if more fine-grained diagnostic information is of interest.  

Jang (2009) and Sawaki, Kim, and Gentile (2009) also commented on the skill 
granularity issue. For the same TOEFL iBT reading test, Jang identified nine skills, whereas 
Sawaki et al. identified only four skills. In particular, Jang identified two vocabulary skills, 
one with and the other without the use of context clues, but Sawaki et al. included only one 
vocabulary skill. Sawaki et al. acknowledged that they had considered the two different 
approaches but decided not to include the context clues for two reasons. First, only when a 
reader is not sufficiently familiar with a word in question, using context clues is required as 
part of the process of responding to a vocabulary item. Also, though two vocabulary skills 
may help to extract more fine-grained diagnostic information, using two may not be feasible if 
a test includes only a small number of items requiring vocabulary as an essential skill. To 
summarize, as Jang (2009) suggested, decisions about the grain sizes of the subskills should 
be made by considering theoretical (construct representativeness), technical (availability of 
test items), and practical (purposes and context of using diagnostic feedback) factors. It is also 
very important to note that given this indeterminacy of the grain sizes, there are always 
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alternative Q-matrices as a function of the definitions and categories of subskills (Lee & 
Sawaki, 2009b). 

The present study shows that it is possible to extract richer diagnostic information than 
the MELAB reading test was designed to elicit. However, retrofitting CDMs with existing 
tests is by no means an optimal approach for diagnostic assessment. In order for a test to 
generate detailed diagnostic feedback, it is essential that it be built for a skills-based 
diagnostic purpose (DiBello, Roussos, & Stout, 2007). Thus, a successful cognitive diagnostic 
assessment of reading comprehension largely depends on test development, which again 
depends on more insightful understanding of the cognitive processes underlying reading 
comprehension.  
 
Selecting Diagnostic Models for Reading Tests 

With a large number of CDMs available, the question is which one to choose for 
reading tests. Lee and Sawaki (2009b) and Rupp and Templin (2008) presented good reviews 
on the available CDMs and software. In addition to a full understanding of the conditions and 
assumptions of the CDMs, one major decision is to make the choice between compensatory 
and non-compensatory models for diagnostic analysis of reading tests.  

CDMs allow for both compensatory and non-compensatory relationships among 
subskills. Non-compensatory models have been preferred for cognitive diagnostic analysis, as 
they can generate more fine-grained diagnostic information. However, the question of 
whether we should use non-compensatory or compensatory models with reading tests does 
not have a clear-cut answer. Lee and Sawaki (2009a) applied three different CDMs to TOEFL 
iBT reading and listening data, including the non-compensatory Fusion Model, the non-
compensatory Latent Class Model (Gitomer &Yamamoto, 1991), and the compensatory 
General Diagnostic Model (von Davier, 2005). They found that “the examinee classification 
results were highly similar across the three cognitive diagnostic models (p. 258). Jang (2005) 
also found that reading skills involved in the TOEFL iBT appeared to be a mixture of non-
compensatory and compensatory interactions.  

In the literature on reading, Stanovich (1980) proposed a compensatory-interactive 
model. A major claim of the model is that “a deficit in any particular process will result in a 
greater reliance on other knowledge source, regardless of their level in the processing 
hierarchy” (p.32). However, according to another equally influential model, the “Simple View 
of Reading” (Gough & Tunmer, 1986), reading comprehension (RC) is the product of 
comprehension (C) and decoding (D), i.e. RC = C x D. The multiplication indicates a non-
compensatory relationship. In fact, except for extreme cases when examinee ability in one 
subskill is zero, the additive property of compensatory models is theoretically equivalent to 
the multiplicative property of non-compensatory models. No matter which model is used, the 
more skills the examinee acquires, the more likely it is that the examinee can correctly answer 
the item requiring those skills. Therefore, at a macro-level, whether a compensatory or non-
compensatory model is used for reading tests is probably inconsequential.  

Also, it seems that the relationships between the subskills may depend on the relative 
difficulty levels of the subskills needed for solving a particular item. Thus this relationship 
may vary across items. If interested, one could empirically test the relationships between 
reading subskills using a log-linear approach (Henson, Templin, & Willse, 2008). Henson et al. 
reparameterized the cognitive diagnostic modeling family with a log-linear approach. In this 
way, estimation could be conducted with more commonly used software such as Mplus 
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(Muthén & Muthén, 2010). An interaction term in the log-linear model indicates the 
relationship between the subskills. With this approach, it is not necessary to choose between a 
compensatory or non-compensatory model, and the relationship between subskills can vary 
across items. With more evidence for the robustness of the log-linear approach for cognitive 
diagnostic analysis, it may prove to be an effective estimation method for diagnostic analysis 
of reading tests.  
 
Potential Use of Scale Scores for Diagnostic Assessment 

Cognitive diagnostic analysis via the Fusion Model or most other CDMs is usually 
technically challenging. It involves a principal dilemma: On the one hand, the use of the 
CDMs is especially helpful for classroom instructors. On the other hand, currently, only a 
small number of psychometricians are trained to use multidimensional CDMs. Therefore, an 
important task is to make the CDMs “absolutely opaque to classroom teachers, to 
coordinators of language education programs, and to other in-the-trenches educators” 
(Davidson, 2010, p. 106). 

In order to reduce the sophistication involved in model calibration and thus maximize 
the advantages of the CDMs, one available option for classroom teachers and non-technical 
researchers is to use scale scores for the subskills (Henson, Templin, & Douglas, 2007). 
Given that the cognitive structure of a test is well validated, a scale score could be calculated 
by averaging the scores of the items associated with a given skill. Item scores may also be 
weighted while contributing to the sum score. With a simulation study, Henson et al. (2007) 
concluded that scale scores could be used to estimate the continuous posterior probability of 
mastery (PPM) with only a moderate reduction in the accuracy of the classification rates. The 
weighted sum score approach, which takes into consideration unequal contributions of the 
item scores, may be more appropriate for complex associations between skills and items. 

As a post-hoc analysis, the scale scores for each skill in the present study were 
obtained by averaging the scores of the items requiring the skill. The spearman rho correlation 
between the average scale score and the average PPM extracted from the Fusion Model 
calibration for skill 1 (vocabulary), skill 2 (syntax), skill 3 (extracting explicit information), 
and skill 4 (understanding implicit information) were respectively 0.956, 0.887, 894, and 
0.878. Likewise, Jang (2005) also found high correlations between the scale scores and PPMs 
in her study with TOEFL reading, which was regarded evidence for the validity of the Fusion 
Model calibration.  

The Fusion Model as well as other IRT-based CDMs have the advantages of IRT 
models, such as being sample-independent and item- (or skill-) independent. The PPMs are 
probabilities of latent subskill mastery, whereas the scale scores are the observed skill scores. 
The relationship between the PPMs and scale scores is thus similar to the relationship 
between the IRT ability scores and the classical raw scores (Suen, personal communication, 
December 27, 2010). The PPMs have more desirable psychometric features than do the scale 
scores; however, the scale scores can be an easy and quick way for less technically competent 
users to derive diagnostic information from a test with a clear cognitive structure.  
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