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ABSTRACT  Common items are widely used to equate test scores of multiple 
forms or to link scores at different educational levels. Violation of assumptions 
of IRT models may challenge parameter invariance of these linking items for 
repeated use over time. Unidimensionality is one of the primary IRT 
assumptions. However, linking items are meant to be representative of the 
whole test and are likely to be sensitive to multiple dimensions that may exist. 
Parameter drift occurs if the statistical properties of items change over time 
(Goldstein, 1983). In this study, random samples were selected from the 
Examination for the Certificate of Proficiency in English (ECPE), of which 30 
linking items were administered three times within six years. Simulated item 
responses for these common items were generated using parameter estimates 
concurrently calibrated for the entire population with three administrations 
combined. In comparison with the simulated data assuming no drift in item 
parameters, the property of parameter invariance for real data samples were 
examined for different latent trait distributions at different time points when 
the items were calibrated and linked using both unidimensional and 
multidimensional techniques. The results confirm that the potential effect of 
multidimensionality was found associated with the item parameter drift (IPD) 
for the same set of common items using four different data dimensional 
compositions. Also discussed are limitations for the constructed compositions 
of actual item responses and the robustness of IPD detection. Future areas of 
research are suggested. 

 
 

In large-scale assessment, it has been a common practice to insert a set of items into 
operational tests for repeated use across years or over multiple administrations. These 
common items, referred to as anchor or linking items, are used to equate test scores of 
multiple test forms or to link tests at different educational levels. Test scores are converted to 
the same scale and become comparable for different groups of examinees. However, the 
validity of scaled test scores are challenged if anchor items do not function identically over 
repeated administrations for the target population. That is, the statistical properties of anchor 
items change over time (e.g., item difficulty value and item discrimination power), which is 
referred to as item parameter drift (IPD) (Goldstein, 1983). 
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Drift is likely to occur when maintaining an item pool over time even though good-
quality items are selected and secured carefully. Such effects may be expected because of 
frequent item exposure, increasing practice effect, or inappropriate test-wise training. Items 
may also perform differently across years due to changes in the construct or content. In 
language assessment, for example, anchor items become relatively easier or less 
discriminating due to growing popularity of certain words and phrases or over exposure to the 
target population. In particular, changes related to national, ethnic, and cultural issues may 
confound estimates of item parameters for English-as-a-second or foreign language (ESL/EFL) 
tests.  

Although item statistics based on classical test theory (CTT) can measure the 
difficulty level and discrimination power of any item, they have been generally recognized as 
sample dependent. As an alternative, item response theory (IRT) models have the property of 
invariance for item and ability parameters given the model fit to the test data of interest 
(Hambleton & Swaminathan, 1985). In 1991, Hambleton, Swaminathan, and Rogers stated 
that “ability estimates obtained from different sets of items” and “item parameter estimates 
obtained in different groups of examinees will be the same (except for measurement errors)” 
(p. 8).  

The features of invariant item parameters are primarily desirable in maintaining an 
item pool and linking test scores on alternate forms, which makes IRT widely used for a 
variety of purposes, such as test equating, score scaling, and computerized adaptive testing. 
Score scale conversions are derived from the responses to those embedded common items, 
which assume the parameters that characterize linking items are independent of ability 
distribution of the examinees over multiple administrations. The unchanged item parameters 
make the observed difference in scaled scores attributable to the difference in abilities across 
groups or measurement of growth over time. Given the importance of invariant item 
parameters and unidimensionality, it is logical to expect that changes in item parameters may 
pose a threat for measuring the latent construct. Drift of anchor item parameters in particular 
may severely jeopardize a fair score conversation using linking items over multiple 
administrations, which may lead to false decisions in certification and licensure test.  

In the 1980s researchers introduced the concept of IPD (Bock, Muraki, & 
Pfeiffenberger, 1988) to represent the changes in item parameters over time and found one 
potential source of IPD was curriculum. Goldstein (1983) developed a general framework of 
measuring relative changes over time for repeated use of tests, while Mislevy (1982) proposed 
a five-step procedure to account for item parameter drift. An example was a fourth-grade 
science test item about the metric system, which was found to be closely associated with the 
coverage of instruction. The time teachers spent in teaching the metric system was longer than 
that spent in teaching the English system, which resulted in declining difficulty for items 
concerning the metric system but increasing difficulty for the English system items. Bock et al. 
(1988) suggested that changes in education, technology, and culture might lead to IPD during 
the useful life of the scale. They found the relationship between item content and relative 
direction of drift could be attributed to a shift in the physics curricula. Similar studies were 
also conducted in the field of applied psychology. Chan, Drasgow, & Sawin (1999) found an 
effect of time on the effectiveness of the Armed Services Vocational Aptitude Battery and 
concluded that some cognitive-ability measures were more susceptible to time impact 
compared to other item types. The authors called for attention to IPD studies and regular 
checks for possibility of IPD.  
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A common approach suggests that a linear relationship should be checked for item 
parameter estimates over time (Hambleton & Swaminathan, 1985; Lord, 1980). During the 
past decades, researchers have been concerned with finding ways to identify the potential 
threats of parameter invariance from item bias across subgroups, namely differential item 
functioning (DIF), though relatively few studies have examined changes in item parameters 
over repeated administrations. Similar statistical procedures can be used to assess both. As 
suggested by Angoff (1988), DIF methodology can be applied to a wide variety of important 
educational and psychological contexts, including time, culture, geography, nationality, age, 
language, sex, and curricular emphasis. Donoghue & Isham (1998) compared a number of 
DIF measures for detecting IPD. However, their simulated data only covered two time points 
with one year apart, which was also the situation in Wells, Subkoviak, and Serlin (2002) and 
Stone and Lane (1991). Two time points are used for applying methods to compare two 
subgroups in most DIF analyses, but this might not be sufficient to examine IPD, and may not 
be generalizable to multiple time points.  

In reality it is typical to expect IPD over multiple testing occasions (Wollack, Sung, & 
Kang, 2006). Several studies of IPD have multiple time points over a span of more than four 
years (Bock et al., 1988). However, most of them considered drift in item difficulty only 
(Davey & Parshall, 1995; Sykes & Fitzpatrick, 1992; Sykes & Ito, 1993). A few studies 
identified changes in both item difficulty and item discrimination (DeMars, 2004; Chan et al., 
1999). Even though several proposed the three-parameter logistic model, they were limited to 
two parameters for simplified interpretation. (DeMars, 2004; Donoghue & Isham, 1998). 

A review of the literature reveals that a variety of IRT models is used for investigating 
IPD (DeMars, 2004; Kelkar, Wightman, & Luecht, 2000; Sykes & Ito, 1993). 
Unidimensionality is the underlying assumption behind IRT, that is, it is assumed that a single 
construct or trait is measured by a set of items. The assumption is easily violated due to the 
multidimensional nature of test items and test purposes in educational and psychological tests. 
Even though it is theoretically assumed that any application of IRT models requires 
unidimensional data, it is still unclear what effect multidimensionality has on the invariance 
property of IRT parameter estimates. Multidimensionality has been found to affect item 
parameter estimates, which consequently influenced item characteristic curves and true scores 
(Oshima, Raju, & Flowers, 1997). However, there is a lack of empirical research about the 
potential consequences of test data sensitive to multiple dimensions on the invariance 
property of IRT parameter estimates. The validity of IRT-based techniques might deteriorate 
to the degree that the data do not meet the assumption of the model (Oshima et al., 1997). As 
a result, a comparison of analyses using unidimensional and multidimensional IRT models is 
necessary for detection of IPD, and the impact of multidimensionality on IPD must be further 
explored. 

The primary purpose of this study is to examine empirically the potential effect of 
dimensionality on parameter invariance of linking items in tests across multiple 
administrations. To be specific, the research question addressed is whether the parameter 
estimates of the anchor items differ over cycles and to what extent the invariance property of 
IRT item parameter estimates is threatened by the violation of unidimensional IRT models. 
Item parameter drift is investigated in the context of a large-scale certification test 
administered over years using both unidimensional and multidimensional techniques. A 
variety of test structures is compared by analyzing different combinations of sections from the 
real test data to identify the impact of multidimensionality on IPD detection. 
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Method 
Data 

The data are from the Examination for the Certificate of Proficiency in English 
(ECPE), which is a large-scale certification test of English as foreign or second language in 
English (EFL/ESL) designed for individuals with advanced English language ability. The test 
is administered annually at approximately 125 authorized testing centers in 20 countries. A 
new form is developed every year. Multiple-choice items are used for the listening and 
grammar/cloze/vocabulary/reading (GCVR) sections. All test forms follow the same clearly 
specified standardized procedures for each administration. The numbers of items administered 
for the listening and GCVR sections are 40 and 140. The numbers have changed to 50 for the 
listening section and 120 for GCVR sections, of which 10 grammar items and 10 vocabulary 
items are trial items and excluded from the final scores. In addition, 30 scored linking items 
are inserted into existing tests for equating to test scores of other forms. These items are from 
three sections: 10 in listening (L), 10 in grammar (G), and 10 in vocabulary (V). Cloze and 
reading items are not used as anchor items due to security issues. 

In this study, data are analyzed using three administered forms that are labeled as Year 
1, Year 3, and Year 6, respectively. The same set of common items was used for these three 
forms. Only responses for these 30 common items were included and there were no blank 
responses. Correct responses are scored as “1” and incorrect responses as “0”. The total 
number of examinees for all three administrations is 72,277. 
 
Dimensionality 

Examination of the internal structure of test data can identify the dominant factors and 
provide evidence for hypothesized multidimensionality. Factor analytic techniques have been 
widely used to determine the dominant factors that have eigenvalues greater than one (Kaiser, 
1960), account for at least 10% of the total variance (Hatcher, 1994), and precedes a 
significant drop in a scree plot. Because all 30 common items are multiple-choice questions, 
the guessing parameter is included in the model to control for the probability of correct 
responses by the examinees with extreme low ability levels. However, guessing cannot be 
corrected for in common exploratory and confirmatory factor analysis models. With the 
assumption that these sections are highly correlated, exploratory analyses using an oblique 
rotation of loadings were conducted in both TESTFACT 4.0 (Wilson, Wood, Gibbons, 
Schilling, Muraki, & Bock, 2003) and NOHARM 2.1 (Fraser, 1993) programs. Guessing 
parameters were fixed at the values estimated by BILOG-MG 3.0 (Zimowski, Muraki, 
Mislevy, & Bock, 2003) and then submitted to both TESTFACT and NOHARM programs for 
calibration because NOHARM and TESTFACT cannot estimate guessing parameters. 

The first step was to compute the eigenvalues based on the tetrachoric correlations 
using TESTFACT to identify important factors. In addition to the absolute values of 
eigenvalues, the relative change in eigenvalues for consecutive factors is proposed by Hattie 
(1985) to determine the number of dominant factors. The ratio of differences in consecutive 
factors, denoted as Factor Difference Ratio Index (FDRI) (Johnson, Li, Yamashiro, & Yu, 
2006a), reflects the relative change in eigenvalues. Hattie (1985) suggests the ratio of the 
difference between the first and the second factor and the difference between the second and 
the third can be used to check the relative strength of the first factor. A rule of thumb proposed 
by Hattie (1985) is that a ratio greater than three is considered as a large difference in the 
contribution of the factors between the first and the others. 
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The second step consisted of assessing the dimensionality by fitting multidimensional 
models of varying solutions and assessing the fit of residual statistics. Different statistics were 
computed by both TESTFACT and NOHARM but they were similar in reflecting the 
difference between the observed and model-based relationship between items. The Root Mean 
Square Error of Approximation (RMSEA) values using TESTFACT were no greater than 0.05, 
indicating a close approximation between observed and expected values. Alternatively, the 
Root Mean Square of Residuals (RMSR), based on the difference between the observed item 
correlations and those implied by models, should be 0.05 or less for an acceptable factor 
solution (Muthen & Muthen, 2001). RMSRs are also available in NOHARM, but the residual 
statistic is based on the difference between the observed and model-based proportions of 
correct responses for each pair of items. As suggested by McDonald and Mok (1995), the 
criteria for this statistic is to be equal to or less than four times the reciprocal of the square 
root of the sample size to indicate fit to the data.  

Finally, plots of the item vectors were used to decompose the 30 linking items in terms 
of the essential dimensionality. Proposed by Reckase and Ackerman (Ackerman, 1994; 
Reckase, 1985), item vector plots are scatterplots of item difficulties using an oblique factor 
analysis solution with three factors. The lengths of vectors are proportional to the 
multidimensional discrimination while the origin of the vectors indicate the three-dimensional 
item difficulties. A good indication of one essential dimension is when the item vectors fall on 
a straight line.  

Previous studies have shown that the whole test has a dominant factor that is overall 
English skill. However, factor analyses also show a clear pattern of structure as items within 
the same test section tend to load high on the same factor except for a few cases (Johnson, Li, 
Yamashiro, & Yu, 2006a, 2006b). In this study, the data are from responses to the linking 
items representing English proficiency in grammar, listening, and vocabulary. By analyzing 
arbitrary combinations of sections in terms of the linking items, a variety of dimensionality 
structures are tested and the effects of these different dimensionality structures on IPD are 
explored.  
 
Design 

The item parameter estimates from concurrent calibration of the entire population, 
including all three years of administration, are taken as “true” item parameter values. The 
mean and variance-covariance matrices for abilities are estimated with the item parameters 
fixed. Based on these “true” item parameters and ability distributions of each year, simulated 
data are generated using the three-parameter three-dimensional logistic model. A sample of 
2000 examinees’ responses is simulated for each administration year, and this process is 
replicated 400 times. The distributions of these simulated data involve items with the same 
parameters and represent the null hypothesis with no drift. In addition, a random sample of 
2000 examinees from the real data is selected without replacement for each administration 
year, which represents the distribution of the alternative hypothesis for testing the IPD.  

In order to reveal the effects of multidimensionality on item parameter drift, four 
combinations of dimensional structures are examined, as outlined in Table 1, for the same set 
of common items. The assumed dimensionality for each calibration reflects a certain factor 
structure. First, all 30 items in the three sections are combined together and taken as a one-
dimensional model measuring English language ability. Second, because the grammar and 
vocabulary sections are considered literacy skills in language assessment, while listening is 



6 X. Li 7

considered an oracy skill, they are scored as two subscales, but each scale is essentially one-
dimensional. For the third condition, the three sections are considered independent from one 
another and calibrated separately. The sections are truly unidimensional, as they are designed 
to measure a particular area of English ability. Based on the three-parameter logistic IRT 
model, the first three calibrations are run using PARSCALE 4.1 (Muraki & Bock, 2003). For 
comparison, an underlying three-dimensional solution is assumed for model IV. Item 
parameters are estimated using TESTFACT 4.0. As a result, there are 24 sets (4 calibrations * 
3 years * 2 data sets) of 400 item parameters estimates after replication.  
 
 
Table 1.  Combinations of Item Calibration 

Model Type a Dimensionality Item Parameters b Software 
I LGV One-dimensional c, a, b PARSCALE 
II L,GV Two-dimensional c, a, b PARSCALE 
III L,G,V Three-dimensional c, a, b PARSCALE 
IV LGV Three-dimensional c, a1, a2, a3, d TESTFACT 

Note: a L refers to listening items, G refers to grammar items, and V refers to vocabulary items; 
b c refers to guessing parameter that is also known as the lower asymptote parameter, a refers to the item 
discrimination parameter, b refers to item difficulty parameter, a is the vector of item discrimination 
parameters, and d is a scalar parameter representing item difficulty. 

 
 

Because of the indeterminacy of scales and the way different programs are set, item 
estimates of different calibrations are required to be placed on the same scale for linking. For 
the unidimensional model, the item parameters fall into a linear relationship, which leads to 
indeterminacy in the scales of calibrations for different groups of examinees. A linear 
transformation is necessary to place the item parameter estimates on a common scale. The 
scaling used the characteristic-curve method (Stocking & Lord, 1983). Under this approach, 
estimated “true scores” were equated using least squares. The base scale was set by the 
concurrent calibration of all three administration years as large samples resulted in smaller 
sampling error given other things being equal (Oshima, Raju, & Flowers, 1997). Calibrations 
of all replications for the first three models were converted to these base scales.  

Indeterminacies are issues also raised in scaling calibrated item parameters under 
multidimensional theory. Three types of indeterminacy are summarized by Li and Lissitz 
(2000). In the coordinate system, both the point of origin and the unit along the axes are 
undefined. The MIRT parameter estimation program TESTFACT addresses these 
identification problems by setting the estimated proficiencies to be distributed as a 
multivariate normal with a mean vector of zero and the identity matrix for the variance-
covariance matrix. The unit is the standard deviation of the observed proficiencies (Li & 
Lissitz, 2000). The third type of indeterminacy is due to the orientation of the coordinate 
system. TESTFACT addresses this issue by setting the coordinate system to be orthogonal, 
which suggests the correlations among the coordinates are set to be zero. Li and Lissitz 
propose an approach of a composite transformation for changing the linked group’s reference 
system into the base group’s reference system by an orthogonal Procrustes rotation, a 
translation transformation, and a single dilation. An extension of these methods to a more 
general approach allows an oblique Procrustes method (Mulaik, 1972) on the basis of work by 
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Martineau (2004) and Reckase and Martineau (2004). In Reckase (2006), the rotation matrix 
is defined in that method as: 

baaa aaaaROT 1)'( , 
where is a n×m matrix of discrimination parameters for the reference system of the linked 
group and is a n×m matrix of discrimination parameters for the reference system of the 
base group. ROT becomes the m×m rotation matrix for the discrimination parameters. 

aa

ba

The rotated a-matrix to the base scale for the linked group is thus given by: 
ROTaa ab  

Accordingly, the d-parameters can be rescaled by adding the transformation matrix as 
follows: 

)()'( 1
abaaaaaab ddaaaadTRANdd , 

where db is a n×1 vector of d-parameters for the reference system of the linked group and da is 
a n×1 vector of d-parameters for the reference system of the base group. TRAN becomes the 
m×1 transformation vector for the d-parameters. 
 
Analysis 

Item parameter estimates converted on the same scale across different administration 
years are compared first for replications of simulated samples and samples from real data. The 
means of parameter estimates of the 400 replications for the common items are plotted to 
detect significant discrepancy over time. Such plots can tell the deviation in distributions of 
the item parameter estimates for real data samples compared to those from simulation 
samples. The simulation data is assumed to be without any drift in parameter estimates 
because they were generated using the same set of item parameters. Items that show the most 
aberrant deviation over time in the real data samples might reveal a drift. Invariant item 
parameter estimates also suggest a good model/test response data fit. Comparing invariance 
properties across different calibrations can lead to a more favored model. 

Even if differences are observed for parameter estimates of the common items, it is 
necessary to test whether these differences are statistically significant or are simply due to 
random error. The standard detection method for differential item functioning (DIF) can also 
be applied to detection of IPD. An extension of the method for differential item and test 
functioning (DFIT), developed by Raju, van der Linden, and Fleer (1995), is used here to 
study IPD. This framework aims to compare test characteristic curves and can be applied to 
either unidimensional or multidimensional tests (Oshima, Raju, & Flowers, 1997), as follows. 

The probability of correctly answering item i for examinee j based on the three-
parameter logistic IRT model (Lord, 1980) is given by: 

))(exp(1
))(exp(

)1(),,,|1(
iji

iji
iijiiiiji bDa

bDa
cccbaYP , 

where ai is the item discrimination parameter for item i, bi is the item difficulty parameter for 
item i, ci is the lower asymptote parameter for item i, and j is the ability parameter for 
examinee j. D is the scaling constant (1.702) to control for the difference between the logistic 
function and normal ogive function. 

The probability of correctly answering item i for examinee j based on the 
multidimensional three-parameter logistic model (Reckase, 1985; Reckase & Mckinley, 1991) 
is given by: 
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)exp(1
)exp(
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where ai is an m×1 vector of item discrimination parameter estimates for item i, di is a scalar 
parameter representing item difficulty for item i, ci is the lower asymptote parameter for item 
i, j is an m×1 vector of the ability parameters for examinee j, m refers to the number of 
dimensions for ability parameters, and D is the scaling constant (.702). 

IRT-based true scores are estimated as: 
k

i
iiiiijj cbaYP

1
),,,|1(  for the unidimensional model and 

  for the multidimensional model. 
k

i
iiiiijj cdaYP

1
),,,|1(

Assuming the examinees’ true score is independent of group membership, the 
differential test functioning (DTF) is defined by Raju, van der Linden, & Fleer (1995) as: 

222222 )()( DDRFDFRFF DEEDTF  
where E is the expectation taken over either the reference group or the focal group,  and  
refer to the mean and standard deviation for each group, and D is given by RF .  
The equation shown above suggests the compensating nature of the proposed DTF. The 
difference in probability of one item for the focal group compared to the reference group is 
canceled out by the difference in another item probability at the test level.  

To represent the potential compensating drift at the item level, nonconfirmatory 
differential item functioning (NDIF) assumes that all items in the test are free of DIF except 
for the item examined, which corresponds to most of the IRT-based DIF methods. NDIF is 
expressed as (Raju, et al., 1995): 

 for dj = 0 for j  i,  2222))()((
ididiFiRiFFi dEPPENCDIF

where PiF and PiR are the probability of a correct response at a given theta value (or vector for 
multidimensional model) using item parameter estimates from the reference group and the 
focal group, respectively, and di refers to the difference in probability for item i for the same 

examinee. The relationship between D and d is: D= , and D is true score differences for 

an examinee. However, only estimates are available in practice to compute these indexes. The 
NCDIF is estimated for each calibration set of each item. The distribution of 400 replications 
for the simulation data serves as the null distribution while the distribution of the one based 
on real data is for the alternative hypothesis.  

k

i
id

1

In this study, the null distribution of NCDIF is generated by sorting the 400 NCDIF 
values calculated using the simulation data. As assumed, the simulation data represent the no 
drift situation except for measurement error. A cut-off value is then determined by obtaining a 
(1- ) percentile with the type I error rate of . Given the choice of  values of 0.05 or 0.01, 
the 95% and 99% confidence intervals are computed for the distribution of the NCDIF index. 

Out of the 400 replications, the count of NCDIF index values that were greater than 
the cut-off values suggests deviation of the distribution of NCDIF for real data from the 
distribution based on simulation data. The null hypothesis is that the mean of the NCDIF 
distributions from simulation samples is equivalent to that from the real data samples. The 
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larger the number is, the more frequent the NCDIF values in the real data sample are rejected 
as being the same distribution as the null.  

 
Results 

Descriptive Statistics 
The descriptive statistics shown in Table 2 include means and standard deviations for 

scale scores for items in each section, which are based on the number of correct responses. 
The number-correct score means of these items for examinees at Year 6 are consistently lower 
than the previous two years. Kuder-Richardson Formula 20 (K-R20) estimates of reliability, 
known as a special case of Cronbach’s alpha, are used for ordinal dichotomies in particular. 
That is, the items are scored as “1” for correct responses and “0” for wrong responses. Similar 
estimates of reliability were found to be above 0.7 across years of administrations, which is 
lower than the criteria value of 0.9 for a homogenous test. The K-R20 is known as a function 
of item difficulty, spread in test scores and test length. The values in this study, however, 
might be underestimated because only a small part of the test (linking items) is included in 
this study. Also reported is the number of examinees who were administered the test each year.  
 
 
Table 2.  Descriptive Statistics and Scale Reliability 

 Case Total Listening Grammar Vocabulary 
K-R20 Mean S.D. Mean S.D. Mean S.D. Mean S.D. 

Year 1 17151 0.739 20.38 4.54 7.65 1.88 7.09 2.06 5.65 2.11 
Year 3 22099 0.717 20.81 4.31 7.73 1.78 7.08 2.02 6.01 2.01 
Year 6 33027 0.742 19.86 4.62 7.58 1.89 6.75 2.07 5.54 2.15 
Total 72277 0.735 20.28 4.53 7.64 1.85 6.93 2.06 5.71 2.11 

Note: S.D.: Standard deviation; K-R20: Kuder-Richardson Formula 20 
 
 
Dimensionality 

The eigenvalues from the tetrachoric correlation matrix were computed by 
TESTFACT, shown in Table 3. There is no output of eigenvalues for NOHARM because the 
program analyzes the sample proportion correct for item pairs instead of a tetrachoric 
correlation matrix. The first three factors all have eigenvalues that are greater than one. The 
first factor is dominant with an eigenvalue around seven, and the second factor is strong with 
an eigenvalue close to three. The ratios of factor differences were also computed and are 
presented in the last column of Table 3. The datasets meet the criteria except for Year 3, but 
the FDRI value is very close to three, which confirms that the first factor dominates while the 
other factors from the second onward make a relatively minor contribution.  

As would be expected, the eigenvalue analysis verified the existence of a dominant 
factor and two minor factors for the test data. The first extracted factor approximately 
accounted for 21% of the total variance for Year 1, 20% for Year 3, and 22% for Year 6. 
However, the second factor accounted for no more than 8% of variation and the third factor 
attributed less than 4% of the variance. Reckase (1979) suggests the first factor accounting for 
at least 20% of total variance verifies a dominant underlying latent factor for items concerned. 
The percentages associated with the first factor were close to critical values, implying an 
approximation to unidimensionality for the test data.  
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Table 3.  Eigen Values, FDRI, and Percentage of Variance Explained using TESTFACT 

TESTFACT Eigen Values FDRI Percentage of Variance Explained 
F1 F2 F3 F1 F2 F3 

Year 1 7.2677 3.0304 1.8943 3.7296 20.88% 7.51% 3.94% 
Year 3 6.7886 2.9947 1.6245 2.7689 19.58% 7.40% 3.26% 
Year 6 7.7298 2.8272 1.6261 4.0819 22.50% 6.87% 3.26% 
Total 7.3029 2.8712 1.6578 3.6523 21.14% 6.99% 3.32% 

 
 
Residuals and fit statistics are also compared for the three factor models and are 

summarized in Table 4. A hypothesized one-factor model, resulting in RMSRs that are close 
to 0.09, does not provide support for a good fit to the data. However, the values decrease 
substantially to approximately 0.05 for the two-factor model, and around 0.03 for the three-
factor model. Comparison of these results with those for the one-factor model suggests that 
the three-factor solution provides the best fit to the data.  

The RMSRs are also available in NOHARM, but the residual statistic is based on the 
difference between the observed and model-based proportions of correct response for each 
pair of items. The RMSRs are generally less than 0.01 and a gradual decrease is observed 
across the three solutions. The Tanaka indexes are also generally greater than the criteria 
value of 0.95, indicating a good model fit. Index values for the three-factor model solution are 
close to one, which suggests a nearly perfect fit to the data. The appreciable improvement of 
model fit occurs after adding the second and the third factors.  
 
 
Table 4.  Goodness-of-Fit Statistics for TESTFACT and NOHARM Exploratory Solutions 

TESTFACT 
Root Mean Square Error of 
Approximation (RMSEA) 

Root Mean Square 
of Residuals (RMSR) a 

F 1 F 2 F3 F 1 F 2 F3 
Year 1 0.0270 0.0267 0.0266 0.0942 0.0554 0.0330 
Year 3 0.0227 0.0224 0.0224 0.0871 0.0461 0.0332 
Year 6 0.0190 0.0187 0.0187 0.0829 0.0476 0.0339 
Total 0.0117 0.0115 0.0115 0.0902 0.0519 0.0317 

NOHARM 
Root Mean Square 

of Residuals (RMSR) b 
Tanaka index of 
goodness of fit 

F 1 F 2 F3 F 1 F 2 F3 
Year 1 0.0073 0.0043 0.0026 0.9799 0.9930 0.9974 
Year 3 0.0065 0.0034 0.0023 0.9760 0.9934 0.9969 
Year 6 0.0067 0.0036 0.0025 0.9797 0.9941 0.9973 
Total 0.0066 0.0036 0.0023 0.9801 0.9941 0.9975 

a RMSR in TESTFACT are based on the residual correlations as the difference between model-based and 
observed item correlations. 
b RMSR in NOHARM are based on the residual correlations as the difference between model-based and 
observed proportions of correct responses. 
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Even though the exploratory analysis evidences a dominant first factor that explains 
most of the variability in observed scores, it is necessary to check whether the other two 
minor factors are essentially different than the first factor and are significant measurable 
constructs. In addition to the eigenvalue and residual analyses shown above, graphic tools for 
measures of fit are also included to compare models of different orders and to provide 
substantive support for multidimensionality.  

Figure 1 displays the item vector plots for test data each year and the test data with 
three years combined. These item vectors are plotted with regard to orthogonal solutions with 
the three-factor model. The vector plots reveal the separation of items into more than one 
group. The listening items (in red) for all four plots show a clear pattern of pointing in the 
same direction, which suggests they constitute an essentially unidimensional scale. However, 
the grammar items (in blue) and vocabulary items (in black) vary widely in their orientations. 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. Item Vector Plots for Total, Year 1, Year 3, and Year 6 

In panel A both grammar and vocabulary items mix with each other but appear to 
comprise two clusters. For panels B and D, both types of items mostly span a common vector. 
In panel C, most of the items are oriented in two different directions but within a small degree. 
In general, the vector plots of all 30 linking items result in three sets of items, each measuring 
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essentially the same composites of skills. The listening items measure the same combination 
of skills and the other 20 items measure two different composites of abilities. 

It is important that the factor solutions are interpretable for the purpose of 
multidimensionality (Gorsuch, 1983). Each of the items had substantial loadings on one 
factor. As a result, these items can be used as indicators to represent the factors from a three-
factor solution. Inspection of Promax rotated factor loadings, given in Table 5, show that the 
three factors extracted are mathematically acceptable and nontrivial. The highest loadings are 
highlighted in bold. Only listening items load high on the second factor for each year, and that 
can be identified as the factor for listening capabilities. Most of the grammar items load on the 
first factor. The vocabulary items are separated into two groups, six of which load on the first 
factor, and four on the third factor. Though grammar and vocabulary items do not cluster 
exactly as designed, the patterns for the factor loadings are similar across administrations.  

The interfactor correlations for the Promax rotated solution are given in Table 6. The 
highest correlations are greater than 0.60, between the first factor and the third factor, 
represented by all grammar and vocabulary items. This is consistent with the test design that 
assumes both items measure English literacy skills. These two factors are also moderately 
correlated with the second factor, indicating oracy skills, represented by all listening items.  

 
 

Table 5.  Promax Rotated Factor Loadings Based on Three-Factor Model  
 Total Year 1 Year 3 Year 6 

F1 F2 F3 F1 F2 F3 F1 F2 F3 F1 F2 F3 
L01 0.05 0.50 0.01 0.07 0.50 0.05 0.03 0.47 0.03 0.08 0.53 0.02 
L02 0.00 0.49 0.04 0.07 0.51 0.04 0.07 0.50 0.02 0.06 0.50 0.06 
L03 0.09 0.64 0.00 0.20 0.72 0.12 0.11 0.63 0.05 0.07 0.65 0.00 
L04 0.09 0.46 0.11 0.13 0.45 0.13 0.14 0.41 0.15 0.04 0.48 0.08 
L05 0.10 0.60 0.02 0.14 0.61 0.03 0.10 0.58 0.08 0.07 0.61 0.06 
L06 0.02 0.39 0.03 0.00 0.38 0.04 0.04 0.30 0.07 0.00 0.45 0.02 
L07 0.09 0.50 0.13 0.22 0.55 0.28 0.08 0.48 0.10 0.04 0.47 0.09 
L08 0.13 0.79 0.01 0.02 0.71 0.09 0.10 0.83 0.04 0.17 0.77 0.02 
L09 0.10 0.62 0.08 0.09 0.65 0.08 0.06 0.63 0.04 0.10 0.60 0.07 
L10 0.20 0.42 0.15 0.14 0.48 0.05 0.19 0.46 0.12 0.19 0.35 0.18 
G11 0.46 0.06 0.12 0.48 0.02 0.17 0.46 0.05 0.12 0.44 0.10 0.10 
G12 0.41 0.02 0.01 0.28 0.02 0.12 0.46 0.07 0.02 0.43 0.01 0.02 
G13 0.59 0.13 0.00 0.51 0.11 0.12 0.64 0.18 0.03 0.56 0.10 0.02 
G14 0.41 0.04 0.11 0.24 0.05 0.29 0.40 0.07 0.12 0.46 0.06 0.03 
G15 0.34 0.23 0.04 0.21 0.19 0.17 0.33 0.21 0.03 0.37 0.27 0.12 
G16 0.63 0.28 0.24 0.83 0.24 0.38 0.72 0.23 0.31 0.51 0.32 0.17 
G17 0.29 0.03 0.41 0.07 0.02 0.52 0.28 0.00 0.39 0.45 0.04 0.30 
G18 0.86 0.19 0.24 0.85 0.17 0.17 0.80 0.24 0.15 0.86 0.17 0.26 
G19 0.37 0.32 0.04 0.24 0.29 0.21 0.47 0.22 0.04 0.35 0.40 0.01 
G20 0.26 0.09 0.11 0.11 0.06 0.29 0.29 0.08 0.11 0.31 0.12 0.01 
V21 0.16 0.19 0.72 0.25 0.14 0.71 0.09 0.23 0.65 0.13 0.21 0.74 
V22 0.10 0.10 0.57 0.01 0.07 0.57 0.07 0.11 0.55 0.18 0.11 0.58 
V23 0.10 0.20 0.82 0.20 0.18 0.82 0.16 0.20 0.83 0.01 0.17 0.74 
V24 0.18 0.08 0.35 0.03 0.08 0.48 0.18 0.10 0.33 0.27 0.08 0.26 
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 Total Year 1 Year 3 Year 6 
F1 F2 F3 F1 F2 F3 F1 F2 F3 F1 F2 F3 

V25 0.38 0.16 0.34 0.41 0.15 0.29 0.35 0.16 0.31 0.37 0.17 0.41 
V26 0.46 0.07 0.09 0.39 0.08 0.13 0.43 0.07 0.09 0.49 0.05 0.09 
V27 0.45 0.02 0.06 0.57 0.01 0.10 0.48 0.02 0.08 0.34 0.02 0.03 
V28 0.57 0.01 0.03 0.51 0.03 0.11 0.51 0.02 0.07 0.58 0.03 0.04 
V29 0.63 0.11 0.03 0.66 0.10 0.03 0.57 0.09 0.01 0.65 0.16 0.01 
V30 0.29 0.13 0.12 0.36 0.10 0.07 0.30 0.13 0.08 0.25 0.15 0.16 

 
 
Table 6.  Promax Factor Correlations Based on Three-Factor Model  
 Total Year 1 Year 3 Year 6 

F1 F2 F3 F1 F2 F3 F1 F2 F3 F1 F2 F3 
F 1 1.00   1.00   1.00   1.00   
F 2 0.48 1.00  0.43 1.00  0.45 1.00  0.50 1.00  
F 3 0.64 0.41 1.00 0.66 0.39 1.00 0.64 0.38 1.00 0.60 0.39 1.00 

 
 

In summary, a similar number of dimensions were identified by eigenvalues analyses, 
residual and fit statistics, and graphic assessment. A three-factor model solution is generally 
supported, while there is also evidence of a dominant first factor or general factor. Although 
residual statistics suggest a parsimonious one-factor solution could fit the model well, graphic 
analyses and factor loadings imply a model with at least two or three factors should be 
considered for better identification and interpretation. Besides the second factor distinctively 
represented by listening items, three-fourths of the grammar and vocabulary items have the 
highest loadings on the first factor and one-fourth on the third factor. The third factor, much 
weaker than the other two, shows some evidence of representing uniqueness of vocabulary 
items that could not be compensated by the grammar items. These tests were in essence three-
dimensional components that were in agreement with the theoretical structure in terms of 
English proficiency in three skill areas.  

 
Invariance of Item Parameters 

A three-dimensional structure was shown to underlie the item responses to these 30 
linking items. The item parameters for these items, modeled using a three-dimensional 
coordinate system, are given in Table 7. Guessing parameters (c, in the first column) were 
calibrated with BILOG-MG from 72,277 real data samples with the three administrations 
combined. Also included are the vectors of a and d parameters calibrated by NOHARM under 
a three-dimensional compensatory logistic model. Items with the highest loadings are used to 
define the axes, which were rearranged for calibration with item 8 placed at the first place. 
Item 18 and item 23 follow as the second and the third items. By default, the a parameters for 
the first item (L08) are set to zero for a2 and a3, and the second item (G18) to zero for a3.  

These item parameters were fixed and submitted to TESTFACT for estimating the 
ability distribution for each year of administration. As shown in Table 8, the means are close 
to zero but there are differences in the mean levels in terms of the three constructs across 
years. The examinees who took the test in the third year in general have the highest mean 
ability levels (all equal to 0.1), while those in the sixth year are relatively low. Item responses 
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for the test in the first year resulted in a correlation of 0.46 between 1 and 2, 0.42 between 
1 and 3, and 0.64 between 2 and 3. For the third year, the correlations were 0.48 between 
1 and 2, 0.40 between 1 and 3, and 0.64 between 2 and 3. The test data in the third 

year show that 1 and 2 are correlated at 0.53, 1 and 3 are correlated at 0.43, and 2 and 
3 are correlated at 0.62. These correlations are corrected for attenuation and modeled for the 

error-free measures of the constructs, which should be higher than the observed correlations. 
The variance-covariance matrices were then computed and are presented in Table 8. 

The means and variance-covariance matrices were used for generating item response 
data for each year of administration. The same set of item parameter estimates in Table 7 was 
input into the three-dimensional extension of the three-parameter logistic compensatory 
model for data generation. As a result, the simulated test data assumes the item parameter 
estimates are equivalent except for measurement error. At the same time, samples were 
randomly selected from real data for each year of administration. Estimates of item 
parameters were calibrated on the basis of the item response data from these samples. The 
results are presented in the following section for comparing estimates from real data to those 
from simulation data assuming different models. 

 
 

Table 7.  Parameter Estimates for Linking Items used for Simulation 
Item c a1 a2 a3 d 
L01 0.267 0.585 0.032 0.041 1.270 
L02 0.229 0.575 0.071 0.011 0.979 
L03 0.344 0.733 0.005 0.064 -0.458 
L04 0.079 0.532 0.129 0.037 0.697 
L05 0.270 0.879 0.248 0.079 1.008 
L06 0.125 0.452 0.086 0.081 0.538 
L07 0.076 0.603 0.134 0.069 0.990 

   L08 * 0.384 1.186 0.000 0.000 1.009 
L09 0.168 0.802 0.036 0.116 0.749 
L10 0.000 0.419 0.087 0.132 0.229 
G11 0.119 0.317 0.567 0.331 -0.121 
G12 0.101 0.135 0.398 0.160 0.112 
G13 0.063 0.087 0.619 0.185 0.501 
G14 0.328 0.146 0.456 0.265 0.501 
G15 0.140 0.405 0.388 0.100 1.542 
G16 0.000 0.596 0.745 0.006 0.724 
G17 0.500 0.350 0.524 0.784 -0.103 

   G18 * 0.023 0.030 0.971 0.000 0.590 
G19 0.284 0.591 0.466 0.292 -0.254 
G20 0.190 0.234 0.317 0.224 0.514 
V21 0.200 0.468 0.152 0.908 -0.351 
V22 0.500 0.437 0.441 0.857 0.862 

   V23 * 0.200 0.026 0.209 1.028 -1.055 
V24 0.315 0.283 0.357 0.489 0.078 
V25 0.255 0.062 0.555 0.520 -0.747 
V26 0.121 0.123 0.518 0.239 0.213 
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Item c a1 a2 a3 d 
V27 0.125 0.167 0.454 0.083 0.180 
V28 0.071 0.258 0.669 0.246 0.291 
V29 0.015 0.109 0.681 0.190 0.405 
V30 0.016 0.294 0.362 0.250 -0.626 

* Items used to anchor the axes. 
 
 
Table 8.  Parameter Estimates for Linking Items used for Simulation 
Item Year 1 Year 3 Year 6 

1 2 3 1 2 3 1 2 3 
Mean 
 0 -0.1 0.1 0.1 0.1 0.1 -0.1 0 -0.1 
Variance/Covariance 

1 0.6 0.2 0.1 0.6 0.1 0.1 0.6 0.2 0.2 
2 0.2 0.7 0.2 0.1 0.6 0.2 0.2 0.6 0.3 
3 0.1 0.2 0.4 0.1 0.2 0.4 0.2 0.3 0.4 
 

Results of Model I 
The plots summarizing the means of the item parameter estimates over years are 

displayed for Model I in Figure 2. This model assumes a dominant one-factor solution for all 
30 items. These item parameter estimates are linked to the same scale. The reference scale is 
the parameter estimates calibrated on all the data with three administrations combined.  

The panels on the left exhibit the means for parameter estimates from 400 simulation 
samples. The upper panel compares estimates for a parameters and the bottom panel contrasts 
estimates for the b parameter. As expected, the means are fairly similar across years of 
administration and nearly fall on the same line, which suggests the items have invariant 
difficulty values and discriminate equally well over time. A few exceptions are item 17 and 
item 22 in terms of the item discrimination. 

The panels on the right exhibit the means for parameter estimates from 400 samples 
from the real data. The upper panel compares estimates for a parameters and the bottom panel 
contrasts estimates for the b parameter. Compared to the simulation data, the means mostly 
fall on a single line but have a clear variation across administrations. Estimates of item 
difficulty remain stable over years except for those of item 3 and item 29. The item 
discrimination power is relatively variable, especially for that of items 5, 17, 21, and 22.  
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Figure 2.  Mean plots of item parameter estimates for simulation data and real data assuming 
Model I1 
 
 
Results of Model II 

The plots summarizing the means of the item parameter estimates over years are 
displayed for Model II in Figure 3. This model assumes two different test scales for all 30 
items with one indicating oracy skills and the other indicating literacy skills. These item 
parameter estimates are linked to the same scale. The reference scale is the parameter 
estimates calibrated on all the data with three administrations combined.  

The panels on the left exhibit the means for parameter estimates from 400 simulation 
samples. The upper panel compares estimates for a parameters and the bottom panel contrasts 
estimates for the b parameter. As expected, the means are fairly similar across years of 
administration and nearly fall on the same line, which suggests the items have invariant 
                                                 
1 The dotted lines represent the parameter estimates based on the simulation sample and the solid lines represent 
the parameter estimates based on samples from real data. The lines and markers in blue represent item estimates 
from Year 1, those in green represent item estimates from Year 3, and those in red represent item estimates from 
Year 6. 
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difficulty values and discriminate equally well over time. A few exceptions are item 17 and 
item 22 in terms of item discrimination. 

The panels on the right exhibit the means for parameter estimates from 400 samples 
from the real data. The upper panel compares estimates for a parameters and the bottom panel 
contrasts estimates for the b parameter. Compared to the simulation data, the means almost 
fall on a line but have a clear variation across administrations. Estimates of item difficulty 
remain stable over years except for those of items 3 and 29. The item discrimination power 
are relatively variable, especially those of items 3, 17, 21, and 22. 

 
 

 
Figure 3.  Mean plots of item parameter estimates for simulation data and real data assuming 
Model II (See note 1 above.) 
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Results of Model III 
The plots summarizing the means of the item parameter estimates over years for Model III 

are displayed in Figure 4. This model assumes each set of items in the listening, grammar, and 
vocabulary sections represents a test subscale. These item parameter estimates are linked to the 
same scale. The reference scale is the parameter estimates calibrated on all the data with three 
administrations combined.  

The panels on the left exhibit the means for parameter estimates from 400 simulation 
samples. The upper panel compares estimates for a parameters and the bottom panel contrasts 
estimates for the b parameter. As expected, the means are fairly similar across years of 
administration and nearly fall on the same line, which suggests the items have invariant difficulty 
values and discriminate equally well over time. An exception is item 17 in terms of the item 
discrimination. 

The panels on the right exhibit the means for parameter estimates from 400 samples from 
the real data. The upper panel compares estimates for a parameters and the bottom panel contrasts 
estimates for the b parameter. Compared to the simulation data, the means almost fall on a single 
line but have a clear variation across administrations. Estimates of item difficulty remain stable 
over years except for those of items 18 and 29. The item discrimination power is relatively 
variable, especially those for items 8, 17, 21, and 22.  

 

 
Figure 4.  Mean plots of item parameter estimates for simulation data and real data assuming 
Model III (See note 1 above.) 
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Results of Model IV 
The plots summarizing the means of the item parameter estimates over years for Model 

IV are displayed in Figure 5 and Figure 6. This model assumes a thee-dimensional extension of 
three-parameter compensatory models resulting in three skill areas. These item parameter 
estimates are linked to the same scale. The reference scale is the parameter estimates calibrated on 
all the data with three administrations combined.  

The panels on the left exhibit the means for parameter estimates from 400 simulation 
samples. The upper panel in Figure 5 compares estimates for a1 parameters and the bottom panel 
contrasts estimates for a2 parameters. The upper panel in Figure 6 compares estimates for a3 
parameters and the bottom panel contrasts estimates for d parameters. As expected, the means are 
approximately equivalent across years of administration and overlap on the same line, which 
suggests the items have invariant difficulty values and discriminate equally well over time. One 
exception was item 18 in terms of the a2 parameter. 

The panels on the right exhibit the means for parameters estimates from 400 samples from 
the real data. The upper panel in Figure 5 compares estimates for a1 parameters and the bottom 
panel contrasts estimates for a2 parameters. The upper panel in Figure 6 compares estimates for 
a3 parameters and the bottom panel contrasts estimates for d parameters. Compared to the 
simulation data, the means mostly fall on a line but have a slight variation across administrations. 
Estimates of item difficulty remain stable over years except for that of item 17. The item 
discrimination powers are relatively variable, especially for those of items 3 and 8.  

 
Figure 5.  Mean plots of estimates for a1 and a2 for simulation data and real data assuming 
Model IV (See note 1 above.) 
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Figure 6.  Mean plots of estimates for a3 and d for simulation data and real data assuming 
Model IV (See note 1 above.) 
 
 

The counts of NCDIF index values that are greater than the cut-off values set are 
summarized in Tables 9, 10, and 11. Each table represents the results from one year of 
administration. Out of the 400 replications, the numbers suggest the deviation of the 
distribution of NCDIF for real data from the distribution based on simulation data. 

The null hypothesis is that the mean of the NCDIF distribution from simulation 
samples is equivalent to that from real data samples. The larger the number is, the more 
frequent the NCDIF values in the real data sample are rejected as being the same distribution 
as the null. Each model has two columns for two rejection values.  

For the first year, the largest number in rejection areas was 400 times (100%) for items 
2, 18, 28, and 29 under Model I. The frequency tends to decrease as the number of factors 
increases in the models. In general, the overall frequency of being rejected has a pattern of 
gradual decline. Model IV has only a few cases being rejected. The  = 0.01 case shows no 
sample NCDIF being rejected except for one item: item 20.  
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Table 9.  Number of Replications with NCDIF above the Cut-Value for First Year 
 

Item 
Model I Model II Model III Model IV 

 = 0.05  = 0.01  = 0.05  = 0.01  = 0.05  = 0.01  = 0.05  = 0.01
L01 127 48 91 56 91 55 1 0
L02 400 400 399 394 399 394 1 0
L03 362 339 388 356 388 356 101 0
L04 44 15 14 7 14 7 0 0
L05 307 265 218 93 218 93 0 0
L06 26 10 45 19 45 19 3 0
L07 87 19 149 56 150 57 0 0
L08 123 62 158 64 158 64 12 0
L09 146 40 142 58 154 57 3 0
L10 16 5 191 100 191 102 50 0
G11 292 210 321 240 102 21 0 0
G12 13 3 12 2 11 2 0 0
G13 101 52 85 58 42 10 0 0
G14 133 43 109 40 114 28 1 0
G15 144 85 223 176 230 140 0 0
G16 260 186 208 93 17 7 0 0
G17 263 166 291 183 179 56 0 0
G18 400 400 400 400 400 399 0 0
G19 96 54 96 24 35 2 0 0
G20 32 17 18 12 19 5 123 13
V21 194 143 96 44 251 169 0 0
V22 42 21 30 14 128 67 0 0
V23 63 14 72 26 207 103 0 0
V24 79 25 65 20 198 57 0 0
V25 170 114 200 142 61 24 0 0
V26 349 315 350 328 155 99 0 0
V27 254 182 281 197 150 84 0 0
V28 400 400 400 400 400 399 0 0
V29 400 400 400 400 389 368 0 0
V30 18 4 33 11 58 23 3 0

 
 
For the third year, the largest number of rejections is 400 times for item 29 under 

Model I. The frequency tends to decrease as the number of factors increases in the models. In 
general, the overall frequency of being rejected has a pattern of gradual decline. Underlying 
MIRT models, Model IV has only a few cases being rejected. The  = 0.01 level has only one 
case being rejected for most of the items. 

 



22 X. Li 23

Table 10.  Number of Replications with NCDIF above the Cut-Value for Third Year 
 

Item 
Model I Model II Model III Model IV 

 = 0.05  = 0.01  = 0.05  = 0.01  = 0.05  = 0.01  = 0.05  = 0.01
L01 135 45 142 108 142 108 10 0
L02 15 8 41 21 41 21 2 1
L03 78 26 154 84 153 87 13 0
L04 24 6 12 6 12 6 1 1
L05 69 21 57 8 56 8 1 1
L06 10 5 87 30 87 30 9 0
L07 261 159 257 132 237 133 1 1
L08 45 18 232 152 228 150 1 1
L09 208 132 177 92 177 91 29 0
L10 0 0 97 54 97 54 1 1
G11 166 98 165 100 58 20 1 0
G12 79 25 91 44 74 22 1 1
G13 46 36 75 43 45 26 1 1
G14 21 8 34 7 20 7 2 0
G15 10 5 11 5 6 3 1 1
G16 48 15 43 24 23 3 1 1
G17 69 24 74 33 41 11 1 0
G18 280 217 336 276 175 52 1 1
G19 227 139 247 147 246 166 6 0
G20 50 16 49 16 24 12 3 0
V21 9 2 1 0 75 31 1 0
V22 141 84 114 70 56 18 1 0
V23 0 0 0 0 1 0 1 0
V24 242 98 210 89 88 35 1 0
V25 22 8 31 16 76 13 1 1
V26 37 13 39 12 97 35 1 0
V27 120 48 118 50 197 132 1 1
V28 38 7 35 17 91 26 1 1
V29 400 400 400 400 400 400 1 1
V30 13 2 20 6 34 12 2 0

 

For the sixth year, the largest number of rejections is 398 times (99.5%) for item 28 
under Model I, followed by item 18 with 389 times. The frequency tends to decrease as the 
number of factors increases in the models. In general, the overall frequency of being rejected 
decreases gradually. Model IV has only a few cases being rejected. The  = 0.05 level shows 
five items being rejected a few times but no item is rejected for the NCDFI index at the 
significance level of 0.01.  
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Table 11.  Number of Replications with NCDIF above the Cut-Value for Sixth Year 
 

Item 
Model I Model II Model III Model IV 

 = 0.05  = 0.01  = 0.05  = 0.01  = 0.05  = 0.01  = 0.05  = 0.01
L01 87 44 72 21 72 21 0 0
L02 184 80 172 97 172 96 0 0
L03 236 171 346 260 347 253 1 0
L04 15 6 18 7 18 7 0 0
L05 87 21 46 6 45 6 0 0
L06 36 21 119 96 119 96 7 0
L07 243 154 293 180 293 180 0 0
L08 42 10 92 19 82 18 1 0
L09 235 141 240 153 260 153 21 0
L10 0 0 13 4 13 4 7 0
G11 13 1 15 5 3 1 0 0
G12 25 11 33 15 45 20 0 0
G13 24 2 10 1 30 6 0 0
G14 25 5 17 7 37 15 0 0
G15 10 1 14 4 11 3 0 0
G16 66 30 85 38 46 5 0 0
G17 74 23 112 51 66 25 0 0
G18 389 369 391 361 398 391 0 0
G19 192 122 145 92 137 44 0 0
G20 39 8 18 3 19 3 9 0
V21 0 0 0 0 3 0 0 0
V22 27 9 22 7 76 20 0 0
V23 0 0 0 0 1 0 0 0
V24 118 37 83 27 78 35 0 0
V25 43 10 77 31 108 22 0 0
V26 158 108 199 128 143 55 0 0
V27 109 55 91 51 75 33 0 0
V28 398 389 398 394 373 277 0 0
V29 284 209 225 99 212 106 0 0
V30 7 2 7 2 15 5 0 0

 
 

Discussion  
 
This study empirically examined the effect of multidimensionality upon the invariance 

property of item parameter estimates in an IRT model. The ECPE data were used to 
investigate the potential drift of both item difficulty and item discrimination estimates for the 
same set of items. Only these common items were examined across three administrations 
within six years for a total of 72,277 examinees. Four models with varying dimensions were 
used to calibrate and link the test data that are sensitive to multiple dimensions. Samples 
selected from real data were compared to the simulation data generated under 
multidimensional model.  
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Multiple dimensions were identifiable for the 30 common items used in the ECPE 
even when traditional methods using eigenvalue analyses identified a single dimension. The 
results of residual analyses and item vector plots suggest that three dimensions are optimal 
solutions. The dimensionality might be underestimated by conventional techniques because 
they rely on a dominant dimension and shared variance. The multiple constructs are highly 
correlated but they measure different composites of English proficiency. 

Preliminary analyses comparing mean plots show that the item parameter estimates for 
simulated samples remain stable as expected. Especially for item difficulty estimates, the 
means are equivalent over time. There are a few items that exhibit slight deviation for item 
discrimination values, which was attributed to measurement error. Consistent stability was 
also observed for different models.  

Compared to the simulation samples without IPD, the results of the real data samples 
reveal a pattern of variation across administrations. However, the degree of variation in the 
IRT item parameter estimates gradually decreases as the dimensions of the model increase. 
There is also a decline in the number of items with dissimilar parameter estimates. The 
multidimensional model has relatively less variance for all item parameter estimates over 
time.  

In general, the item difficulty indices exhibit a very high degree of invariance across 
samples, even for calibrations in the one-dimensional model. No obvious negative effect of 
multidimensionality on the invariance property was observed. The models with lower 
dimensions show a tendency of having slightly less invariance estimates than the models with 
higher dimensions. The estimation of item difficulty parameters is robust and remains stable 
for both unidimensional and multidimensional models. 

The item discrimination parameter estimates are generally less invariant than the item 
difficulty values. The degree of invariance of item discrimination parameter estimates also 
increases steadily as the dimensions of models increase, implying that the IRT discrimination 
parameter estimates do not maintain a high degree of invariance for items sensitive to 
multiple dimensions. In addition, the number of items with dissimilar discrimination estimates 
decreases over time with an increase of dimensions.  

Using the NCDIF index for statistical significance of invariant parameter estimates, 
the differences in true scores for both groups are compared. It shows that the differences are 
not due to random noise but lead to different item characteristic curves. The count of NCDIF 
values greater than the cut-off values provides guidance for what degree of parameter 
variation is within acceptable limits.  

As a result, the analyses of real test data presented as examples in this paper show that 
there is evidence of an effect of multidimensionality on parameter invariance. 
Multidimensional models generally exhibit less variation than unidimensional models, even 
for models assuming three dimensions based on sections. The results show that the choice of 
models for calibration and linking tend to have a large effect on the resulting IPD detection. 
The increase in the amount or magnitude of IPD among the linking items might be due to the 
inadequate dimensionality addressed. For items that are sensitive to multiple dimensions, 
models with higher dimensions produce similar indices across forms and are consistently the 
best among the models. The observed IPD using unidmenional models might indicate that 
inadequate dimensionality was addressed. 
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Implications and Limitations 
 
The findings of this study have important implications for the ECPE and other long-

term large-scale assessments (e.g., the Examination for the Certificate of Competency in 
English). The assumption of unidimensionality is critical for any IRT analysis. Traditionally, it 
is typical to claim that there exists only one “dominant” factor that influences the test 
performance, based on the eigen values or scree plots. However, this assumption cannot be 
completely met by any set of test data. The conventional exploratory factor analysis 
assessment might be misleading, especially for test data with highly correlated factors. The 
findings of other studies are actually based upon a combination of measures that is the 
aggregate of multiple measures. The results are likely to mask what should be differential 
results related to invariance of item parameters. Researchers and parishioners should be 
cautious against assuming unidimensionality and the property of parameter invariance might 
be misleading with the assumption violated.  

In addition, assessments apply valid and reliable techniques to make a fair evaluation. 
IPD poses a threat on the validity of scores by introducing trait-irrelevant differences in 
anchor items over time. The cut scores are determined by comparing the performance of 
linking items from one year to previous years’ tests. Failing to identify IPD can disadvantage 
individual test-takers and jeopardize test interpretations. However, misspecification of IPD 
due to dimensionality may also provide flawed information when generalized to other 
conditions. Thus, a better understanding of the dimensionality of the real data analyzed may 
lead to valid conclusions drawn from the interchangeable use of alternate forms, which would 
be valuable and helpful for practitioners in enhancing the quality of large-scale assessment. 

The results must be considered in light of study limitations. The linking items were 
only a small part of the whole set of test items. Analysis using only linking items is likely to 
lead to a source of additional sampling error. This study illustrates to some extent the 
robustness of item response theory under the violation of the assumption of 
unidimensionality. Though evidence of drift in the item parameters was found, other factors 
might confound the sources of IPD. For instance, some items might have a large magnitude of 
IPD if they are administered in two different locations on a test, especially for end-of-test 
items used for linking (Wollack et al., 2006; Oshima, 1994). Some degree of parameter 
variation might be reasonable indicating inherent changes in characteristics. However, the 
question is at what point this might lead to measurement nonequivalence and cause error in 
linking and equating. The crucial question is at what point does parameter variation become 
critical and leads to biased results. Future research may attempt to specify models more 
precisely using a wider range of variables, with better measurement, that might result in 
stronger prediction of the sources of drift in item parameters. 
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