Determining Seat Time for a Shortened Section of a High-Stakes Standardized Test
Nicolas May, Patrick McLain, \& Stephen O'Connell, Michigan Language Assessment

Introduction

Following feedback from Michigan English Test (MET) stakeholders that the number of items and duration of the test were onerous, a shortened version of the test was developed that maintained the high reliability and content validity of the MET. However, following these revisions to the number of items on the exam, the test developers faced the challenge of determining an appropriate new sea time for the reading and grammar section that would avoid introducing any undue speededness.

Study Design and Results

Using item response time data from a previous research project, two seat times were chosen to be trialed: 60 minutes and 75 minutes.

Figure 1: Study Design
Several sources of evidence were used to determine which seat time was most appropriate. The sources Several sources of
of evidence were:

- Preliminary Seat Time Estimate (Internal Pilot Data)
- Test Taker and Proctor Survey Results (External Pilot Survey Data)
- Test Summary Statistics (External Pilot Test Data)
- Lu \& Sireci Speededness Indices (External Pilot Test Data)
- Differential Item Functioning Analysis (External Pilot Test Data)

Internal Pilot Data

Prior to piloting the exam on the test takers, a small internal pilot of the revised exam was run with 6 CaMLA employees (3 native speakers and 3 highly proficient non-native speakers). The purpose of this pilot was to use the information on the amount of time the internal pilot participants needed to complete time for the 50 item exam. This was done using the following ratio:

Internal Pilot Average Time (75 items)
x Internal Pilot Average Time (50 items) Current Seat Time (75 Items) Estimated Seat Time (50 minutes)

This resulted in a seat time estimate of 71.25 minutes for the revised reading and grammar section. (! Small sample size).

External Pilot Survey Data

Table 1: Summary of Test Taker Survey Responses by Seat Time							
Seat Time	N	Too Much	OK	Too Little			
$60-$ Minutes	550	3.27	71.27	25.45			
75 -Minutes	385	5.71	87.79	6.49			

Pearson's Chi-Square Test (Independence): $X 2=57.21, d f=2, \mathrm{p}$-value <0.001

Table 2: Summary of Proctor Survey Responses by Seat Time				
Seat Time	N	Too Much	OK	Too Little
60-Minutes	33	0.00	78.79	21.21
75-Minutes	16	6.25	81.25	12.50

Seat time difference had a statistically significant impact on the test takers' perception of having "too much", "OK", or "too little" time to complete the exam. By contrast, seat time difference did not have a statistically significant impact on the proctors' perception of the test takers having "too much", "OK", or "too little" time to complete the exam.
External Pilot Test Data
Test Summary Statistics

Table 3: Summary of Test Results by Seat Time								
Seat Time	N	Mean	SD	Minimum	First Quartile	Median	Third Quartile	Maximum
60-Minutes	553	31.43	11.01	0	22	32	41	50
75-Minutes	388	33.55	10.44	10	26	34	43	50

Lu \& Sireci Indices
Three indices described in Lu \& Sireci (2007) were used to determine if either the 60 -minute or 75 -minute seat time resulted in any undue test speededness for the shortened exam.

Table 4: Summary of Single Administration Speededness Indices			
Indices	Formula	Description	Interpretation
Power Ratio	$\frac{S_{U}}{S_{X}}$	Ratio of the standard deviations of the number of items not reached (U) to the total number of items not given a correct answer (X).	Values less than 0.25 are indicative of an unspeeded test
Speededness Ratio	$\frac{S_{W}}{S_{X}}$	Ratio of the standard deviations of the number of items incorrectly answered or omitted (W) to the total number of items not given a correct answer (X).	Values less than 0.1 are indicative of a speeded test.
Speededness Quotient	$S Q=\frac{\sum U}{\sum W+\sum U}$	Proportion of items not reached (U) to the total number of items not given correct answers ($\mathrm{W}+\mathrm{U}$) summed across all test takers.	Values close to 0 are indicative of a power test. Values close to 1 are indicative of a speeded test.

Table 5: Summary of Speededness Indices by Seat Time		
Indices	60-Minutes	75-Minutes
Power Ratio	0.14	0.03
Speededness Ratio	0.97	1.00
Speededness Quotient	0.012	0.001

Differential Item Functioning Analysis
Differential item functioning (DIF) analysis was performed to determine if there was a significant difference in item difficulties between test takers who took the 60 -minute and 75 -minute seat times.

Figure 2: Item Difficulty Comparison
The clustering of the points near the identity line, and the similarity of the regression line to the identity Ine suggest that the item difficulties were not substantially different, regardless of the seat time allotted Additionally, the high coefficient of determination ($r^{2}=0.8771$) shows that most of the variation in the item difficulties for the 75 -minute seat time (87.71%) can be explained by the item difficulties for the 60 -minute seat time.

Conclusion

Overall, while the analysis of the survey data revealed that the seat time did have a significant impact on the test takers' perception of the amount of time they had to complete the exam, the results of he differential item function analysis indicate that there was not a significant difference in test taker performance on the 60 -minute and 75 -minute test forms. Furthermore, the Lu \& Sireci (2007) indices or evaluating test speededness in a single administration indicate that neither seat time resulted in meriate for MET

References
Bejar, I. I. (1985), Test Speededness Under Number-Right Scoring: An Analysis of the Test of English as a Foreign Language. ETS Research Report Series, 1985: i-57. doi:10.1002/j.2330-8516.1985.tb00096.x Bolt, D. M. Cohen, A. S. and Wollack, J. A. (2002), Item Parameter Estimation Under Conditions of Tes Speededness: Application of a Mixture Rasch Model With Ordinal Constraints. Journal of Educational Measurement, 39: 331-348 doi:10.1111/:1745-3984.2002 tb01146 x
u, Y. and Sireci, S. G. (2007), Validity Issues in Test Speededness. Educational Measurement: Issues and Practice, 26: 29-37. doi:10.1111/j.1745-3992.2007.00106.x
Oshima, T. C. (1994), The Effect of Speededness on Parameter Estimation in Item Response Theory Journal of Educational Measurement, 31: 200-219. doi:10.1111/j.1745-3984.1994.tb00443.x
Van der Linden, W. J. (2011), Setting time Limits on Tests. Applied Psychological Measurement, 35 183-199. doi: 10.1177/0146621610391648.x

MICHIGAN LANGUAGE
ASSESSMENT

Contact Information
Patrick McLain
Assessment Statistician
Michigan Language Assessment Email: mclain.p@michiganassessment.org

MichiganAssessment.org

