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Abstract

Modelling listening item difficulty remains a challenge to this day. Latent trait models 
such as the Rasch model used to predict the outcomes of test takers’ performance on test 
items have been criticized as “thin on substantive theory” (Stenner, Stone, & Burdick, 
2011, p.3). The use of regression models to predict item difficulty also has its limitations 
because linear regression assumes linearity and normality of data which, if violated, results 
in a lack of fit. In addition, classification and regression trees (CART), despite their rigorous 
algorithm, do not always yield a stable tree structure (Breiman, 2001).

Another problem pertains to the operationalization of dependent variables. Researchers 
have relied on content specialists or verbal protocols elicited from test takers to determine 
the variables predicting item difficulty. However, even though content specialists are highly 
competent, they may not be able to determine precisely the lower-level comprehension 
processes used by low-ability test takers just by reading test items. Furthermore, verbal 
protocols elicited during test-taking may interfere with the cognitive task (Sawaki & Nissan, 
2009).

Previous reading research uses CART to investigate item difficulty, but despite being 
competently conducted, the resultant regression trees have been inconsistent across test 
forms (Gao, 2006). In the current proposed study, two classes of Artificial Neural Networks 
(i.e., Multilayer Perceptron ANN and the Adaptive Neuro-Fuzzy Inference System or 
ANFIS) are used to explore the effect of lexical and syntactic complexity of items and texts 
on MET listening items’ difficulty in seven MET listening tests. In addition, Coh-Metrix 
measures which have conventionally been used to measure reading text complexity are also 
applied in this investigation (Riazi & Knox, 2014). To our knowledge, these methods have 
not been applied to investigate lexical and syntactic complexity of the listening texts and 
items. Findings from the study will contribute to the validity argument for the Michigan 
English Test (MET) and provide additional empirical evidence to assist CaMLA in 
evaluating the quality of listening test items (see also Goh & Aryadoust, 2010).

Background

Developing a predictive theory of item difficulty 
allows researchers both to predict the difficulty of test 
items with reference to salient item- and text-level 
variables and to manipulate test item difficulty in 
predictable ways by altering those variables (Daftarifard 
& Lange, 2009; Perkins, Gupta, & Tammana, 1995). 
Modelling listening test item difficulty, however, remains 
a challenge to this day.

To develop predictive theories, researchers have 
adopted a variety of statistical tools to explore the 
variables that influence item difficulty in listening 
comprehension. Notable examples include regression 
models (Grant & Ginther, 2000), artificial neural 
networks (Perkins et al., 1995), and classification and 
regression trees (CART) (Gao, 2006). Application of 
latent trait models such as the Rasch model to predict 
the outcomes of test takers’ performance on test items 

has also been criticized as “thin on substantive theory” 
(Stenner, Stone, & Burdick, 2011, p. 3). Although these 
studies have informed the field, their methodologies have 
certain limitations. 

The first problem pertains to data analysis tools: 
some of these studies have relied on linear regression, 
which assumes linearity and normal distribution. If 
these assumptions are violated, the model does not fit, 
likely leading researchers to refute the theory-informed 
hypotheses. However, the relationships among variables 
in language and educational assessment may be nonlinear. 
As a result, the “validity of the studies in which multiple 
regression is used to predict item difficulty is not high” 
(Perkins et al., 1995, p. 35). In addition, although CART 
does not make any assumptions regarding normality 
and has rigorous algorithms, as Gao’s (2006) study of a 
MELAB reading test showed, tree structures are not stable 
across samples (Breiman, 2001).
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Another problem pertains to the operationalization 
of independent variables. Researchers have relied on 
content specialists’ evaluation or test takers’ verbal 
protocols to determine the variables predicting item 
difficulty. However, even though content specialists are 
highly competent, they may not be able to determine 
precisely the lower-level comprehension processes used 
by low-ability test takers just by reading test items 
(Alderson & Kremmel, 2013; see also Zhang, Goh, & 
Kunnan, 2014, for the effect of test takers’ cognitive and 
metacognitive strategies). Furthermore, there is a concern 
that verbal protocols elicited during test-taking may 
interfere with the cognitive task, inflicting construct-
irrelevant factors on the data (Sawaki & Nissan, 2009). 

It is therefore necessary to use alternative approaches 
when determining variables influencing item difficulty. 
One such method for estimating text difficulty which 
has been used in reading and writing studies with 
some reliability is Coh-Metrix (Crossley, Salsbury, & 
McNamara, 2012), which has not been applied to 
investigate listening text complexity.

The present study seeks to examine the difficulty 
of the MET listening test items using two classes of 
artificial neural networks: a multilayer perceptron 
neural network and an adaptive neuro-fuzzy inference 
system (ANFIS)—an artificial neural network model 
accommodating fuzzy set theory—which may be able 
to overcome the limitations of methods previously 
mentioned. Independent variables of the study will be 
generated through Coh-Metrix and findings of ANFIS 
modeling will be compared against linear regression and 
CART to evaluate their effectiveness.

Literature Review

Predictive Data Mining 

Predictive modelling is a data mining technique by 
which various variables are tested for their influence on 
a future outcome. Data mining itself is a term which is 
commonly used in computer science and refers to the 
process of discovering, and summarizing meaningful 
statistical patterns in large data sets (Geisser, 1971). 
Some notable predictive models include regression, 
multivariate adaptive regression splines (MARS), 
classification and regression tree (CART), neural 
networks and their extension called adaptive neuro-
fuzzy inference systems (ANFIS), as well as Meta-
Cognitive learning algorithm for neuro-fuzzy inference 
system (McFIS) (Aryadoust, 2013a; Subramanian & 

Suresh, 2012). Most predictive modelling applications 
involve multiple independent variables or predictors 
and this can result in multicollinearity—significantly 
high correlations of independent variables. Therefore, 
it is important to examine the correlation among 
independent variables before subjecting data to 
predictive modelling. 

We discuss three primary predictive models 
including linear regression, CART, and neural networks 
(including ANFIS) below. 

Linear Regression Models

A linear regression analysis models the dependent 
variable as a function of one or more independent 
variables. For example, a perfect linear relationship 
between the values of Y (or dependent/response variable) 
and X (or independent/predicting variable) can be 
viewed as follows: Y = β0 + β1X, where β0 is the intercept 
parameter and β1 is the weight parameter of X. The 
equation can determine the amount of Y given the 
amount of X, but there is nevertheless some uncertainty 
regarding the magnitudes of β0 and β1, which results in 
residuals—the differences between the predicted and 
actual values of Y. Residuals are used to evaluate the fit of 
the regression model to the data. 

Several methods have been proposed to determine 
the regression models that would best fit data sets. One 
such method is called Least Squares which minimizes the 
sum of the squares of the residuals of the equation. If the 
mapping between dependent and independent variables 
is nonlinear, the magnitude of residuals increases, thereby 
rendering the regression model a poor fit to the data. To 
achieve optimal fit and high precision, nonlinear data 
analysis techniques such as CART and artificial neural 
networks have been recommended (Breiman, Friedman, 
Olshen, & Stone, 1984). 

Classification and Regression Trees (CART)

CART modelling is a nonparametric tree-building 
technique which possesses several important advantages 
over linear regression: it makes no distributional 
assumptions about the data; it manages missing data, 
outliers, multicollinearities, and heteroskedasticity well 
(e.g., outliers are allocated an independent node and 
collinear independent variables are used in surrogate 
splits, thereby having no effect on the model); it can 
identify interactions among independent variables; and it 
can reduce high dimensional data (data comprising many 
independent variables) into a few useful variables. 
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CART comprises a number of forward growing 
and backward pruning processes resulting in multiple 
predictive models or progressively less complicated trees 
(Breiman et al., 1984). If the dependent variable in the 
analysis is categorical, CART will give a classification 
tree and if it is continuous, CART will generate a 
regression tree. Classification will help the researcher 
predict the class of dependent variable data by using the 
independent variables. That is, CART helps uncover 
the independent variables responsible for a certain 
phenomenon or dependent variable. So, the goal is to 
determine the class in which the dependent variable data 
would fall. 

Classification trees are grown according to the “left-
first” rule where CART algorithms initially split data on 
the left side branch into two nodes and then move to 
the right side (Steinberg & Colla, 1995). After growing 
all branches, the largest tree is subsequently pruned 
in a backward-moving process called “cost-complexity 
pruning.” In this process, the splits which do not 
optimize the fit of the model (i.e., redundant splits) will 
be regressively eliminated till the most prudent model 
is yielded (Steinberg & Colla, 1995). The optimal tree 
is chosen according to the fit statistics and precision of 
its parameter estimates as well as the substantive theory 
available to the researcher (Yohannes & Webb, 1998).

Splitting Nodes and Improvement 

CART initially determines a variable and a value in 
the variable on which basis to split the data set. Once 
the value or threshold is determined, a rule is made: any 
data point below or equal to the value will go to the left 
and data points greater than the value will go to the right 
node. Splitting the data on the tree disaggregates the 
sample into two subsamples at each node. Since there 
might be numerous independent variables, numerous 
splits would be potentially viable. To rule out the poorly 
fitting (potential) splits, CART generates and tests all 
possible disaggregations and chooses the best correlates 
that split the data optimally (Steinberg & Colla, 1995). 
For each splitter at each variable, CART estimates a 
goodness-of-split measure which is called improvement. 
This processes is repeated for all independent variables, 
the splitters are ranked in a descending order and the 
best splitter is chosen. The predicting variables that 
have close improvement indices at each node are called 
competitor. If two or more best fitting competitors are 
identified, the tree is pruned by either deleting the one or 
more competitors or by forcing the second or other best 
competitors into the tree as the initial splitter. Finally, if 

two variables contain highly similar information, one of 
them is chosen as the primary splitter; the other variable 
which can be equally important in terms of information 
is called surrogate variable (Breiman et al., 1984).

Variable Importance Index in CART

As earlier noted, CART is a nonparametric model 
and accordingly is not based upon the commonly used 
concepts of statistical significance. To examine the effect 
of independent variables, CART yields an Importance 
Index which indicates the contribution of that variable to 
the dependent variable in a particular tree.

To estimate the Importance Index of each variable, 
CART uses the improvement index for each variable 
in its capacity as a primary or a surrogate variable. The 
magnitudes of these improvement measures at each node 
are totaled and scaled. The variable with the highest 
improvement measures is scored 100, and other variables 
will possess relatively lower Importance Indices. The 
important index of zero in CART indicates that the 
input variables never appeared as primary or surrogate 
variables in the model and therefore make no significant 
contribution to the tree (Steinberg, Colla, & Martin, 
1998). It is also important to note that only the first 
competitor is awarded credit; the competitors which 
are below the best competitor will receive no credit or 
the Importance Index of zero, unless they are surrogate 
variables. 

Another index for assessing the performance of 
CART models is relative cost or the proportion of 
misclassifications. The relative cost index ranges between 
zero and one with values closer to zero indicating better 
separation of the classes of the dependent variable 
(Steinberg et al., 1998). 

Testing and Cross-Validation 

Like linear regression, CART generates R2 
(R-Squared) statistics which is calculated as 1 – relative 
error. However, this measure often overestimates the 
goodness of fit. Accordingly, CART analysts have 
proposed testing and cross validation. CART partitions 
the data into training (learning) and testing subsamples; 
estimates the best model for the training data; and fits 
the yielded model into the testing data to estimate the 
efficacy of the solution in new data. Training helps 
estimate the optimum prediction power of independent 
variables and testing verifies the prediction power 
(Breiman, 2001).

CART starts by dividing the entire data set into 
k folds (e.g., k = 10, as proposed by Breiman et al., 
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1984). When there is insufficient data for testing, the 
training data is randomly k-folded and the estimated 
model is fitted into all folds. The partitions include an 
even distribution of the dependent variable and have 
approximately equal size. Subsequently, k models are 
constructed, each comprising k-1 data partitions for 
training and only one partition for testing (Breiman, 
1994). 

CART is a useful method when the researcher wishes 
to derive a set of simple correlates in a large data set. 
Some CART computer packages apply “stopping rules” 
by which the process of model building is terminated 
at certain points (Schaffer, 1993). Although this would 
produce simpler models, it could prematurely terminate 
the algorithm before arriving at an optimal solution. 
In the present study, the CART algorithm which is 
used does not use a “stopping rule” so as to preclude 
premature convergence of the data analysis (Wolpert, 
1992). 

Despite these advantages, CART is limited by the 
features of the training data; that is that nonsignificant 
changes made to the training data can exert significant 
influences on the model. In addition, CART is a 
nonprobabilistic model with no confidence interval 
associated with predicted values derived from CART; 
therefore, the accuracy of the results yielded is based 
around the prediction power of the model in other 
“circumstances” through k-fold cross-validation 
(Seyoum, Richardson, Webb, Riely, & Yohannes, 1995).

Artificial Neural Networks (ANNs)

ANNs are mathematical 
nonparametric models 
comprising an interconnected 
set of processing units called 
“neurons,” which are adaptive and 
trainable and contain experiential 
knowledge. Like the brain, ANNs 
consist of interconnected units 
or neurons which are capable of 
pattern recognition, prediction, 
classification, and learning. The 
networks acquire knowledge in 
data and store the knowledge in 
a system of neuron connection 
strengths called synaptic strengths 
or weights (Barbour, Brunel, 
Hakim, & Nadal, 2007). Relative 
to the conventional statistical 
models of prediction and 

classification, ANNs have several important advantages: 
They are highly adaptive and impose no assumption on 
the relationships between dependent and independent 
variables such as normality, linearity, homoscedasticity 
(homogeneity of variance), and error independence 
which are preconditions of, for example, multiple 
linear regression. Therefore, if the relationship between 
variables is linear, ANNs learn the linear structure and 
approximate linear regression and if the relationship is 
nonlinear, ANNs would seek the best nonlinear structure 
fitting the data (IBM, 2012).

Verlinden, Duflou, Collin, Cattrysse (2008, p. 407) 
stated that, “The biggest advantage of neural networks 
is the fact that they can approximate functions very 
well without explaining them. This means that an 
output is generated based on different input signals and 
by training those networks, accurate estimates can be 
generated.” Mathematical functions such as multilayer 
perceptron (MLP) and radial basis function (RBF) are 
used to predict output or dependent variables in ANNs 
with minimum error by using input or independent 
variables. MLP is a simple ANN with three distinct 
layers: input, hidden, and output, each comprising 
several neurons with mathematical activation functions 
such as hyperbolic tangent and logistic functions.

Figure 1 presents an ANN with three inputs notated 
as X1-3, two neurons in the hidden layer notated as H(1:1) 
and H(1:2), and two outputs notated as Y1 and Y2. Each 
layer also has an activation function which is a 
mathematical expression of the amount of output on the 
basis of the input data (e.g., sigmoid function 

Figure 1:	 An artificial neural network with three layers, three inputs (X1, X2, & X3), two 
bias terms, and two outputs (Y1 & Y2). The weights are represented as Wi.  

activation function which is a mathematical expression of the amount of output on the basis of
the input data (e.g., sigmoid function mathematically expressed as 𝑓𝑓(𝑥𝑥) = 1

(1 + 𝑒𝑒−𝑥𝑥)
 ). The input 

layer is connected to the hidden layer where the mathematical processing of the data is 
performed via a network of weighted connections. The most important factor determining the 
type of mathematical functions in the ANNs is the weights.

The training technique we used in this study is called backpropagation which uses
various learning rules to learn the patterns in the data. To apply the learning rule, a number of 
iterations are performed while new data patterns enter the network. When new patterns enter, the 
network will attempt to randomly estimate the amount of output. The initial estimates are 
typically imprecise and different from the actual output. Accordingly, the packpropagation 
technique is used to move backward in the network and reduce the amount of discrepancy by 
adjusting the weights, presented as W1-14 in Figure 1. The process of adjustment continues till the 
network reaches the least amount of discrepancy between the estimated and actual outputs. The 
weights in an ANN are analogous to β coefficients in linear regression models. 

The network in Figure 1 also has two bias neurons which help the network to learn the 
underlying patterns of the data more efficiently and estimate the output accurately. Bias can be 
viewed as analogous to error of measurement in linear regression modeling.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. An artificial neural network with three layers, three inputs (X1, X2, & X3), two bias 
terms, and two outputs (Y1 & Y2). The weights are represented as Wi.
 
 

Adaptive neuro-fuzzy inference system (ANFIS) is an extension of ANNs which 
integrates them and fuzzy set theory (Landín, Rowe, & York, 2009). Since the ANNs have been 
previously discussed, fuzzy set theory is explained further below. 

Fuzzy set theory (LotfiZadeh, 1965) provides a means of representing relationships 
which are imprecise or “fuzzy” in ANFIS modelling. Membership in a fuzzy set is determined 
with a set of conditional statements, including IF-clauses and THEN-clauses. Magnitude of error 
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mathematically expressed as f   (x)= 1
(1 + e –x)). The input 

layer is connected to the hidden layer where the 
mathematical processing of the data is performed via a 
network of weighted connections. The most important 
factor determining the type of mathematical functions in 
the ANNs is the weights.

The training technique we used in this study is 
called backpropagation which uses various learning 
rules to learn the patterns in the data. To apply the 
learning rule, a number of iterations are performed 
while new data patterns enter the network. When new 
patterns enter, the network will attempt to randomly 
estimate the amount of output. The initial estimates are 
typically imprecise and different from the actual output. 
Accordingly, the packpropagation technique is used to 
move backward in the network and reduce the amount 
of discrepancy by adjusting the weights, presented as 
W1-14 in Figure 1. The process of adjustment continues 
till the network reaches the least amount of discrepancy 
between the estimated and actual outputs. The weights 
in an ANN are analogous to β coefficients in linear 
regression models. 

The network in Figure 1 also has two bias neurons 
which help the network to learn the underlying patterns 
of the data more efficiently and estimate the output 
accurately. Bias can be viewed as analogous to error of 
measurement in linear regression modeling.

Adaptive neuro-fuzzy inference system (ANFIS) is 
an extension of ANNs which integrates them and fuzzy 

set theory (Landín, Rowe, & York, 2009). Since the 
ANNs have been previously discussed, fuzzy set theory is 
explained further below. 

Fuzzy set theory (LotfiZadeh, 1965) provides a 
means of representing relationships which are imprecise 
or “fuzzy” in ANFIS modelling. Membership in a fuzzy 
set is determined with a set of conditional statements, 
including IF-clauses and THEN-clauses. Magnitude 
of error is estimated by goodness-of-fit indices such as 
coefficient of efficiency and root mean squared error. 

Figure 2 presents a fuzzy inference system with one 
input, and two trapezoidal “low” and “high” membership 
functions created by a neuro-fuzzy model. The first step 
in neuro-fuzzy modeling is “fuzzification,” in which the 
input, the continuous variable X1, enters the system and 
associates with two subsets, A (low) and B (high). X1 
(value = 14) is fuzzified as 0.80 and 0.40: that is, µ1(X1 
= A[low]) = 0.80; and µ2(X1 = B[high]) = 0.40 (Lotfi Zadeh, 
1965). The second step assesses the defined fuzzy rules 
by applying the fuzzified input to the rules’ antecedents. 
The rules take the following formats: 

Rule1: IF X1 = A[low], THEN Y = 2.	 (1)

Rule2: IF X1 = B[high], THEN Y = 5.	 (2)

(Y is the output and could take any value depending 
on the range of the data to be predicted). Suppose the 
model has two inputs, X1 = 14 and X2 = 18. X2 would 
also have (at least) two membership functions—low and 

is estimated by goodness-of-fit indices such as coefficient of efficiency and root mean squared 
error. 

Figure 2 presents a fuzzy inference system with one input, and two trapezoidal “low” and 
“high” membership functions created by a NFM. The first step in neuro-fuzzy modeling is 
“fuzzification,” in which the input, the continuous variable X1, enters the system and associates 
with two subsets, A (low) and B (high). X1 (value = 14) is fuzzified as 0.80 and 0.40: that is, 
µ1(X1 = A[low]) = 0.80; and µ2(X1 = B[high]) = 0.40 (Lotfi Zadeh, 1965). The second step assesses 
the defined fuzzy rules by applying the fuzzified input to the rules’ antecedents. The rules take 
the following formats: 

Rule1: IF X1 = A[low], THEN Y = 2.                              (1)
Rule2: IF X1 = B[high], THEN Y = 5.                             (2)

(Y is the output and could take any value depending on the range of the data to be predicted). 
Suppose the model has two inputs, X1 = 14 and X2 = 18. X2 would also have (at least) two 
membership functions—low and high—and the rules of the joint functions of the two inputs 
might be rewritten as:

Rule1: IF X1 = A[low] AND X2 = A[low], THEN Y1 = 2.      (3)
Rule3: IF X1 = A[low], AND X2 = B[high], THEN Y2 = 3.    (4)
Rule2: IF X1 = B[high], AND X2 = A[high], THEN Y3 = 4.    (5)
Rule2: IF X1 = B[high], AND X2 = B[high], THEN Y4 = 5.    (6)

Suppose that on the fuzzy functions, the low and high values of X2 take the values 0.3 
and 0.6. The rules are then evaluated as follows: Rule1: µ1 = 0.80 × 0.30 = 0.024, THEN Y1 = 2; 
and so forth. The rules are then defuzzified and the value of Y is estimated as follows: Y = 
(µ1×Y1) + (µ2×Y2) + (µ3×Y3) + (µ4×Y4) [31]. 

Figure 2. Illustration of a simple neuro-fuzzy system.

7 | P a g e  
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high—and the rules of the joint functions of the two 
inputs might be rewritten as:

Rule1: IF X1 = A[low] AND X2 = A[low], THEN Y1 = 2.	 (3)

Rule3: IF X1 = A[low], AND X2 = B[high], THEN Y2 = 3.	 (4)

Rule2: IF X1 = B[high], AND X2 = A[high], THEN Y3 = 4.	 (5)

Rule2: IF X1 = B[high], AND X2 = B[high], THEN Y4 = 5.	 (6)

Suppose that on the fuzzy functions, the low 
and high values of X2 take the values 0.3 and 0.6. 
The rules are then evaluated as follows: Rule1: 
µ1 = 0.80 × 0.30 = 0.024, THEN Y1 = 2; and so forth. 
The rules are then defuzzified and the value of Y is 
estimated as follows: Y = (µ1×Y1) + (µ2×Y2) + (µ3×Y3) + 
(µ4×Y4) [31]. 

Listening and Reading Studies

Linear Regression in TOEFL Research

Language assessment research has largely focused 
on reading test item difficulty and listening studies 
have relied heavily on reading research (Aryadoust, 
2013a; Buck, 2001). Research into listening and reading 
item difficulty with linear regression models might be 
categorized into two major eras: pre- and post-1990s.1 
In the former period, several researchers such as Davey 
(1988), Green (1984), and Drum, Calfee, and Cook 
(1981) modeled reading test item difficulty as a function 
of, for example, surface structure features, length of the 
passage, along with several item-related variables such 
as the number of multisyllabic words and stem and 
option length. Embretson and Wetzel (1987) found that 
connective propositions alongside some of the variables 
in Drum et al.’s study predicted the difficulty of reading 
test items. 

In the 1990s, English Testing Service (ETS) 
researchers started to research the variance in reading 
and listening item difficulty of the TOEFL and reading 
sections of Scholastic Aptitude test (SAT) and Graduate 
Record Exam (GRE). They found that item difficulty 
is primarily attributed to text features (for example, 
lexical density, number of referentials, sentence length, 
and negation), item features (for example, stem and 
distractors’ length), and their interactions represented 
(Freedle & Kostin, 1991, 1992, 1993a, 1993b, 1996; 
Nissan, DeVincenzi, & Tang, 1996). 

In a series of important publications, Freedle and 
Kostin studied reading item difficulty in SAT, GRE, 

1	 The latter period is marked primarily by ETS (English Testing Service) 
research.

and the TOEFL. Using stepwise and hierarchical 
regression models, Freedle and Kostin (1991) examined 
SAT reading item difficulty and found that test takers’ 
ability to identify main ideas, to make inferences, and 
to understand explicit statements would account for a 
part of the variance of SAT reading item difficulty. They 
further found that text features, item attributes, and their 
interactions were influential variables, thereby providing 
evidence that multiple-choice questions tap a construct 
similar to reading under nontest conditions. Freedle and 
Kostin’s (1992) study of GRE reading item difficulty 
yielded similar results. 

In two consecutive studies, Freedle and Kostin 
(1993a, 1993b) found that multiple variables accounted 
for some portion of the variance of the TOEFL reading 
section. For example, Freedle and Kostin (1993a) 
reported that variables such as the lexical overlap 
between the correct option and passage, the location 
of information for items demanding inference-making, 
and subject matter predicted approximately 32% of the 
variance in TOEFL reading item difficulty. They also 
found that “rhetorical organization, sentence length, 
location of relevant information, and lexical overlap” 
(p. 21) were important influential variables which 
emerged in a nested regression model. 

For the TOEFL listening test, Freedle and Kostin’s 
(1996, 1999) studies suggest that 12 sentential and 
discourse level variables such as lexical density, negation, 
and stem length accounted for 33% of the variance 
of item difficulty. This is in line with early research 
conducted by Carpenter and Just (1975) and Grimes 
(1975) who showed that negations and rhetorical 
structure would impact prose recall accuracy (see also 
Meyer & Freedle, 1984) and text comprehension 
accuracy (see also Hare, Rabinowitz, & Schieble, 1989).

Finally, Nissan et al. (1996) and Kostin (2004) 
found that three major variables significantly influenced 
the difficulty of the mini-talks of the TOEFL listening 
test: (a) negation in the dialogue (at least two negative 
words); (b) the cognitive process demanded by the 
item, specifically inference-making beyond explicitly 
articulated information; and (c) “the pattern of 
utterances in the dialogue” (Kostin, 2004, p. 27). 
Drawing on Adams, Carson, and Cureton, (1993), 
Kostin argued that item difficulty can be adjusted by 
manipulating these variables.

Linear regression models have achieved varying 
degrees of success in the aforementioned studies, though 
the highest amount of variance explained by item 
difficulty has hardly exceeded 50%. This might be due 
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to the judgment of experts who were tasked to identify 
the influential variables (see Alderson & Kremmel, 2013, 
for the effect of expert judgment) or the linear model 
which is affected by nonlinear patterns in the data. To 
ascertain the reliability of regression model output and 
control for the effect of rater judgments, regression-
based Coh-Metrix research has recently emerged where 
linear regression modelling is used innovatively. This is 
reviewed in the next section followed by reviews of other 
research studies. 

Regression-Based Coh-Metrix Research

Coh-Metrix is a free analytic tool for measuring 
psycholinguistic features of texts. Coh-Metrix has been 
used in several reading, first and second language (L1 & 
L2) writing, and speaking studies and achieved relative 
success (Crossley & McNamara, 2010, 2011; Crossley & 
Salsbury, 2010; Crossley, Salsbury, McNamara, & Jarvis, 
2011). In this section, we survey the Coh-Metrix reading 
research, as it is more closely related to listening research, 
both being comprehension skills.

Crossley, Greenfield, and McNamara (2008) 
examined the association of L2 text readability with 
lexical frequency, syntactic similarity, and content 
word overlap which are related to three L2 reading 
comprehension processes: decoding, syntactic parsing, 
and meaning construction, respectively. Multiple 
regression modelling gave an R2 value of 0.86, meaning 
that 86% of variance in L2 text readability was explained 
by these variables. Relative to the traditional readability 
formulas such as Flesch Reading Ease and Flesch-Kincaid 
Grade Level, Coh-Metrix readability index achieved 
more accuracy in predicting reading difficulty.  

Similarly, Crossley, Allen, and McNamara (2012) 
compared the precision of traditional readability and 
Coh-Metrix readability indices in classifying the texts 
into beginner, intermediate, and advanced levels. The 
Coh-Metrix readability index outperformed the other 
two indices in classifying texts into those three levels. 
The researchers argued that the Coh-Metrix index took 
into account factors related to text comprehensibility 
including cohesion and meaning construction, along 
with cognitive-processing indices such as decoding and 
syntactic parsing.

In a different study, Crossley, Louwerse, McCarthy, 
and McNamara (2007) compared the syntactic, 
rhetorical, and lexical features of simplified and 
authentic texts. They found that authentic texts were 
marked by diversity in parts of speech, larger numbers 
of logical operators (for example, if, then, & but), and 

causality, whereas simplified texts were lexically less 
diverse but syntactically more complex. Both groups of 
texts contained equal levels of abstractness, although 
simplified texts contained more referential cohesion (i.e., 
when a pronoun such as it or he refers to another word 
which has been mentioned in the text) and common 
connectives (for example, and & or). 

Crossley and McNamara (2008) replicated Crossley 
et al.’s (2007) study by using a larger corpus of simplified 
and authentic reading texts. Their findings were 
consistent with Crossley et al.’s (2007) results, indicating 
that Coh-Metrix would be an efficient alternative to 
traditional readability measures. 

The aforementioned studies have applied regression 
models in an innovative way. They split the data into 
training and testing samples, estimate a regression 
model for the training sample, and use its intercept 
and beta coefficients to predict the dependent variable 
(which is writing or reading scores) in the testing 
sample. However, the researchers often deleted highly 
correlated predictors, arguing that they would cause 
multicollinearity (i.e., high linear association between 
predictors or independent variables), which can alter the 
structure of the postulated models.

Cognitive Diagnostic Assessment

To address the limitation of linear regression, 
another group of researchers have used cognitive 
diagnostic assessment models (Aryadoust, 2012; 
Lee & Sawaki, 2009). In one of the earliest studies, 
Buck, Tatsuoka, and Kostin (1997) used rule-space 
methodology (Tatsuoka, 1983, 2009) to determine 
the influential variables in a reading test. They found 
that item features such as syntactic relations, discourse 
structure, and vocabulary difficulty were significant 
features influencing students’ performance on reading 
tests. 

Buck and Tatsuoka’s (1998) application of rule-space 
methodology to a listening test identified 15 primary 
attributes (for example, the ability to identify the task, 
to process medium/low amounts of information, and to 
use background knowledge) and 14 interactions which 
could classify 96% of students successfully. Although 
they used no vocabulary and syntactic complexity 
measures in the study, they suggested that these measures 
be used in future research specifically “some general 
index of complexity, which would somewhat take into 
account the cumulative effects of all the most important 
characteristics which make up syntactic [and lexical] 
complexity” (Buck & Tatsuoka, 1998, p. 141). Buck 
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and Tatsuoka’s speculation concerning the impact of 
syntactic and lexical features of the listening test items 
was supported in Aryadoust’s (2012) application of the 
fusion model to section four of the IELTS listening test. 
Aryadoust found that the linguistic features of items 
such as grammar and vocabulary alongside the ability to 
make paraphrases, understand specific information, and 
“integrate listening and reading in short-term memory” 
influenced test performance. 

Using the fusion model, Sawaki, Kim, and Gentile 
(2009) examined the attributes tested by the listening 
and reading sections of the Internet-Based TOEFL 
(TOEFL iBT). They found that four major attributes 
classified reading test takers successfully, including 
the ability to: (a) understand “word meaning”; 
(b) understand “specific” and key information; (c) 
connect information; and (d) synthesize and organize 
information (Sawaki et al., 2009, p. 199). Similarly, the 
listening was influenced by the ability to: (a) understand 
“general information”; (b) understand details; (c) 
understand “text structure” and intention of the speaker; 
and (d) link ideas (p. 203). Lee and Sawaki (2009) 
also examined the listening and reading sections of the 
TOEFL iBT, comparing latent class analysis, general 
diagnostic model, and the fusion model. The three 
methods performed equally well, yielding similar results 
to Sawaki et al.’s study. 

In another fusion model study, Jang (2009) reported 
two primary groups of attributes influencing reading 
test takers’ performance text- and test-related. These 
comprised nine major attributes including context-
dependent and context-independent words; semantic 
and syntactic connections, negation, understanding 
textually explicit and/or explicit information, inference-
making, summarizing, and “mapping contrasting ideas 
into framework” (Jang, 2009, p. 231). Jang stated that 
“A reading comprehension assessment that is designed 
to elicit such process-oriented skills can provide more 
authentic accounts of readers’ competencies in L2 
reading comprehension” (p. 232). 

Application of CART in Language Assessment

CART or similar tree-based methods have achieved 
relative success in language and educational assessment. 
Gao and Rogers (2011) tested the validity of a cognitive 
model for reading assessment and identified multiple 
variables influencing reading test item difficulty. They 
reported that the “plausibility of distractors” was the 
most significant variable predicting item difficulty, 
rendering the test-taking process a “problem-solving 

process” influenced significantly by “verbal reasoning 
abilities” (Gao & Rogers, 2011, p. 97). Whereas the 
number of plausible distractors can alter the difficulty 
level of test items, it might also invite the execution of 
cognitive processes which are different from real-life 
reading comprehension processes, thereby affecting the 
cognitive validity of the test (Field, 2009). Gao and 
Rogers summarized other findings of their study as 
follows:

An item bearing the following features 
would likely be an easy item: it does not have 
plausible distractors and requires basic syntactic 
knowledge. In contrast, an item bearing the 
following features would likely be more difficult: 
it has more than one plausible distractor, 
requires recognizing the meaning of unknown 
words using context clues, and requires 
information located in the entire passage. (Gao 
& Rogers, 2011, p. 99)

Gao and Rogers’s (2011) study has two primary 
limitations. First, although they used two test sample 
tests for analysis, they did not partition the data into 
training and testing samples nor did they apply cross-
validation, yielding overfitting solutions (Breiman et al., 
1984)—a limitation which was acknowledged by the 
authors. (Overfitting occurs when the CART or other 
statistical tools model measurement errors in lieu of the 
underlying structure of the data). This issue also resulted 
in different trees in the two tests. Second, the sample of 
test items chosen was fairly small, which would inflate 
the fit of the model. 

In another study, Sheehan and Ginther (2001) 
applied a tree-based regression approach to explore the 
variables that affect the reading test item difficulty of the 
Test of English as a Foreign Language (TOEFL). The 
study revealed that the cognitive processes engaged by 
the items such as understanding the main idea predicted 
87% of the observed variance in item difficulty indices. 
They operationalized main idea as (a) correspondence 
between the passage and correct options; (b) location 
of important information in the passage; and (c) the 
length of the passage that test takers should process 
to respond to the item. This finding is partially in 
line with Sheehan’s (1997) tree-based regression study 
where several variables accounted for reading test item 
difficulty, including the cognitive processes engaged 
by items such as understanding implicitly or explicitly 
articulated information, vocabulary, and linguistic 
features of the items’ options. It is also consistent with 
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Huff ’s (2003) study of reading and listening sections 
of the TOEFL. Huff reported that features of and the 
interactions between items’ stems and (reading and oral) 
passages accounted for 56% and 48% of the variance in 
reading and listening item difficulty, respectively. 

Finally, Rupp et al. (2001) applied both linear and 
tree-based regression models to examine the effect of the 
required cognitive processes induced by passage feature 
such as information density or length of sentences, item 
features such as the length of the options, and item by 
passage features on difficulty of reading and listening 
comprehension items. Their linear regression model 
showed that passage and interaction features accounted 
for item difficulty and the tree-based regression model 
revealed more details about these effects. However, they 
speculated that the study might have been affected by the 
modalities of the data since reading and listening items 
were examined jointly. 

Application of Neural Networks in Language Assessment

The application of neural network in language and 
reading studies is critically underresearched. To our 
knowledge, only two studies have used these models. 
The first study was conducted by Perkins et al. (1995, 
p. 34) who used “a three-layer backpropagation” neural 
network to predict item difficulty in 29 TOEFL reading 
comprehension items. Perkins and colleagues split 
the sample into training (15) and testing (14 items) 
subsamples and tested a reading model containing “text 
structure, propositional analysis of passages and stems, 
and cognitive demand” (p. 39) by using a sigmoid 
function (a mathematical function having an S-curve). 
They achieved significantly high correlation (> 0.90) 
between actual item difficulty and the attributes after 
optimizing the relationship between items and attributes. 

More recently, Aryadoust (2013a) applied a neuro-
fuzzy inference system (ANFIS), an extension of neural 
networks, to a 40-item listening test. He found that 
“word frequency," item and information type, density 
of prepositional phrases, modal verbs, and propositional 
density of oral texts and items (“the number of 
independent units conveying discrete messages within 
each text” [p. 45]) predicted item difficulty. Compared 
with ANFIS, the path model yielded a less accurate 
model, though it accommodated the interaction between 
independent variables. He concluded that “The results of 
the ANFIS model seem to be more intuitive and theory-
informed, which is a significant advantage” (p. 48). 

Despite their contribution to listening and reading 
studies, Aryadoust’s (2013a) and Perkins et al.’s (1995) 
studies used small samples. The present study aims to 
use a larger sample of listening test items to examine the 
effect of psycholinguistic features on listening test item 
difficulty.

Methodology

Data Source and Materials 

The data and materials required for this study were 
provided by CaMLA and include the item-level data 
of students performing on seven independent MET 
listening tests. The test takers were from South American 
countries including Columbia, Costa Rica, Peru, Brazil, 
and Chile. The demographic information of the test 
takers is presented in Table 1. Each test form consists 
of 46 test items, giving a sample of 322 multiple choice 
test items (7 tests × 46 items), which will yield stable 
solutions in data mining analyses (Hair, Black, Babin, 
Anderson, & Tatham, 2010). Form 1 has the largest 
sample size (n = 963) and Form 3 the smallest sample 

Table 1:	 Demographic Information of the Listening Tests	

No. of Items Age Mean Score Sample Size
Gender Distribution

M F
Form 1 46 22.09 963 457 506
Form 2 46 27.71 612 302 310
Form 3 46 26.85 564 235 329
Form 4 46 22.96 758 336 422
Form 5 46 23.50 608 253 355
Form 6 46 20.87 708 347 361
Form 7 46 23.62 826 348 487
Total 322 23.94a 5039 2278 2770
Note. a average age
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size (n = 564). Overall, the number of test takers was 
5039, which will yield stable item Rasch difficulty 
parameters (Bond & Fox, 2007).

CaMLA also provided the test materials including 
test items and audio materials, which were transcribed 
and subjected to Coh-Metrix analysis. Each test 
comprises three sections, as follows:

(a)	Part one comprises 17 short conversations 
between a man and a woman. Each conversation 
is followed by a test item with four options. 

(b)	Part two comprises four lengthy conversations 
between a man and a woman. Each conversation 
is followed by three or four comprehension test 
items with four options. 

(c)	Part three comprises three mini-talks on 
academic topics, each followed by three or four 
comprehension test items with four options. 

Generating Independent Variables 

To create independent variables, we used measures of 
semantic, lexical, and syntactic complexity for each test 
items as computed by Coh-Metrix. We also attempted to 
estimate traditional statistics such as the average length 
of t-units—the shortest grammatically accurate sentence. 
However, analyzing several test items, we found that the 
number of t-units were equal to the number of sentences 
counted by Coh-Metrix in most cases. Therefore, we 
took the number of sentences as a proxy for t-units.

Next, we identified the “necessary information” (NI) 
to answer the listening test items (Buck & Tatsuoka, 
1998). For each item, we merged the NI, item stem, 
and distractor texts and performed Coh-Metrix analysis. 
Although it would have been desirable to examine 
each component (NI, item stem, and distractor texts) 
independently, the short length of the components 
would preclude us from estimating reliable Coh-Metrix 
statistics. The advantage of this combination lies in the 
length of the yielded text and the reliability of Coh-
Metrix indices. However, one limitation of this approach 
would be the mix of written and oral modalities, likely 
affecting the precision of the results. This limitation 
has also affected previous research such as Rupp et al.’s 
(2001) study of reading and listening tests. 

After estimating the Coh-Metrix statistics for all test 
items, we chose the best input variables (explanatory 
correlates) among the statistics. Because too little 
is known about the use of Coh-Metrix in listening 
comprehension studies, choosing the optimal variables 

would be extremely difficult. We chose the Coh-Metrix 
variables similar to the influential variables emerging 
from the previous research such as lexical diversity, 
situation model, syntactic pattern density, syntactic 
complexity, text easability, and word information. 
Following previous researchers (see Crossley & 
Salsbury, 2010), we correlated the chosen variables 
with item difficulty parameters, choosing 12 variables 
with significant correlations with the output variable 
(p < 0.05), including word count, text easability (PC 
temporality), content word overlap, given-new sentences’ 
average, type-token ratio (content word lemmas or 
labels), logical connectives, causal verbs and particles, 
left embeddedness (words before main verb), preposition 
phrase density, verb incidence, hypernymy for nouns and 
verbs, and Flesch-Kincaid grade level. These variables are 
presented in Table 2. For example, the lexical diversity 
category is measured by the type-token ratio or the 
ratio of unique words (types) to the total number of 
words (tokens). A low type-token ratio would suggest 
low cohesion or short length of the text (McNamara, 
Louwerse, Cai, & Graesser, 2013). 

Finally, the independent variables were discretized 
using the software Discretize.exe, since the Coh-Metrix 
variables have a wide spread, likely yielding less accurate 
results (Lui, Hussain, Chew, & Dash, 2002). The 
discretized variables comprised three to five levels. 

Data Analysis

This study uses multiple primary data analysis 
techniques: (a) initially, Rasch item difficulty indices 
were estimated. The measures were discretized by using a 
median split technique where items were categorized into 
low- and high-difficulty items; (b) next, as noted earlier, 
independent variables were generated by estimating 
the semantic and syntactic complexity measures of 
test items and texts through Coh-Metrix methods; (c) 
theoretical correlates of the item difficulty measures were 
determined; and (d) finally, the data were subjected to 
logit (logistic) regression model, CART, ANN (including 
perceptron and ANFIS) to determine the predictive 
independent variables.  

The Rasch Model 

Test items were subjected to the Rasch model 
and their difficulty measures—which constitute the 
dependent variable of the study—were estimated. 

Fit statistics. Rasch model infit and outfit mean 
square (MNSQ) statistics were also estimated. (Bond 
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Table 2:	 Coh-Metrix Theoretical Correlates of Item Difficulty Parameters 	

Variable Category Remarks 

Word count Descriptive Number of words in the text. Lengthy texts can tax listeners’ cognitive resources 
and working memory and be difficult to process.

Temporality Text easability 
principal 
component 
scores

Research shows that temporal features such as tense can facilitate comprehension 
(Duran, McCarthy, Graesser & McNamara, 2007). In writing research, Crossley 
and McNamara (2010, p. 17) found that “writers judged as highly proficient 
provide readers with less temporal cohesion and word overlap.”

Content 
word overlap 
(adjacent 
sentences)

Referential 
cohesion 

It measures the overlap of content words in two adjacent sentences. The overlap 
tends to facilitate the text and comprehension (Kintsch & Van Dijk, 1978). 

Given-new 
sentences’ 
average

Latent semantic 
analysis (LSA)

This is a measure of semantic overlap between sentences and was chosen because 
the item stems, options, and necessary information had some semantic overlap 
in the present study (see Hempelmann, Dufty, McCarthy, Graesser, Cai, & 
McNamara, 2005; McCarthy, Dufty, Hempelman, Cai, Graesser, & McNamara, 
2012).

Type-token 
ratio (content 
word lemmas)

Lexical diversity Crossley, Allen, and McNamara (2012) found that higher type-token ratios tend to 
increase the difficulty of the test item.

Logical 
connectives 
incidence

Connectives Connectives create coherence in texts and facilitate comprehension (McNamara et 
al., 2010). 

Incidence of 
causal verbs and 
causal particles

Situation model Causal verbs and particles convey agenthood and cause-effect relationships (e.g., 
affect & because) (McNamara, Ozuru, Graesser, & Louwerse, 2006). 

Words before 
main verb 
mean (left 
embeddedness)

Syntactic 
complexity 

Crossley et al. (2012), Graesser, Cai, Louwerse, and Daniel (2006), and Just and 
Carpenter (1992) found that texts with a large number of words before the main 
verb are more difficult. More recently, Aryadoust, Mehraban, and Alizadeh (2014) 
used an MLP ANN and verified the influence of words before the main verb. 

Preposition 
phrase density 

Syntactic 
pattern density

The number of phrases starting with a preposition indicates the syntactic density 
of the text. Syntactically dense texts tend to be more difficult to parse and 
comprehend (Crossley et al., 2012).

Verb incidence Word 
information 

Verbs convey important information and parsing them successfully helps listeners 
achieve comprehension. 

Noun and verb 
hypernymy

Word 
information

Hypernymy is calculated based on Miller, Beckwith, Fellbaum, Gross, and Miller’s 
(1990) WordNet and indicates texts’ lexical sophistication and word specificity. It 
had weak but statistically significant correlation with essay grades in Crossley and 
McNamara’s (2010) study, but failed to predict the grades in the linear regression 
model. By contrast, Crossley, Salsbury, & McNamara (2009) reported significantly 
high prediction power for hypernymy.   

Flesch-Kincaid 
grade level

Readability Crossley, Allen, and McNamara (2012) found that Coh-Metrix readability index 
would outperform Flesch-Kincaid grade level in explaining the difficulty level of 
texts, although the latter also achieved significant accuracy. 
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& Fox, 2007). Infit MNSQ is an index sensitive to the 
perturbations of inliers or the responses targeted on the 
test takers and outfit is a weighted fit index sensitive to 
the data patterns far from test takers’ ability. According 
to Bond and Fox (2007), an item is underfit if its fit 
MNSQ index is greater than 1.4 and overfit if fit MNSQ 
values are below 0.6. Aryadoust, Goh, and Lee (2011) 
proposed a more stringent fit criterion for multiple 
choice questions that treats items with fit statistics falling 
outside of range between 0.8 and 1.20 as misfit. In this 
study, we apply Aryadoust et al.’s criterion in order to 
improve the precision of the measurement (Baghaei & 
Amrahi, 2011). 

Item and person reliability. We estimated Rasch 
model item and person reliability (true variance / 
observed variance) and separation coefficients. The 
person reliability index ranges between zero and 1.00 and 
indicates the sensitivity of the test to distinguish among 
high- and low-ability test takers, hence the precision of 
the measurement for the test takers. The item reliability 
index also ranges between zero and 1.00 and indicates 
the sufficiency of the sample size. Reliability is also 
expressed as separation (true standard deviation / root 
mean square error of measurement) which is the number 
of statistically distinct levels of test item difficulty or test 
taker ability. For example, item separation index of three 
indicates three statistically distinguishable strata of items. 

Z-scores and Discretization. We initially prepared 
the data for linear regression analysis by calculating the 
z-scores and identifying the outliers which violated the 
normality assumption (Hair et al., 2010). In this study, 
we deleted the items whose z-scores would fall outside of 
|-2 – +2|, retaining 241 test items for analysis. 

We then converted the continuous item difficulty 
measures into a categorical variable. We tested two 
approaches: initially we developed a three-level 
categorical variable where the test items were coded as 
high, medium, and low difficulty. Then, we estimated 
the median of the item and made two item difficulty 
levels: values below and equal to the median were put 
in the “low” difficulty level and values above it were 
labeled “high." To test the precision of the two variables, 
we correlated them with the original difficulty measures 
and found that the median split variable had a higher 
correlation (0.81) than the three-level variable (0.71). 
Accordingly, we chose the two-level variable as the 
dependent variable of the study. 

Regression Analysis 

We applied a multiple regression model on SPSS, 
Version 21, with 12 independent variables generated by 
Coh-Metrix and the discrete item difficulty variable, as 
follows: Y = β0 + β1X1 + β2X2 +… + β12X12 + e, where β0 
is the intercept, β1-12 are the coefficients that describe the 
effect size of the independent variables on item difficulty, 
X1-12 are the independent variables or the theoretical 
correlates generated by Coh-Metrix, and e is the error of 
measurement.2

To explore the precision of different regression 
model-testing methods, we tested four regression 
methods: (a) Enter: where all independent variables are 
simultaneously entered into the equation, (b) Remove: 
where all independent variables are simultaneously 
removed from a block of variables, (c) Stepwise: where 
independent variables are chosen based on their p values, 
and (d) Backward: where all independent variables 
enter the system and then removed one by one to reach 
the optimal combination of the variables. For each 
independent variable, we estimated the p value which 
indicates how confident we are that each independent 
variable is associated with the dependent variable 
(Tabachnick & Fidell, 2013). We further estimated the 
R2 index, which is the amount of the variation in the 
dependent variable explained by (or predicted by) the 
independent variables. Finally, we estimated the adjusted 
R2 index which adjusts the magnitude of the R2 index 
for the sample size. 

To test for multicollinearity, we estimated the 
variance inflation factors (VIF) for each model, which 
determines the increase in the variance of the estimated 
coefficients if the independent variables have no 
correlations (O’Brien, 2007; Stevens, 2009). If the 
independent variables are not correlated, the VIF indices 
will be equal to unity. VIF statistics equal to or below 
five are treated as the indicator of noncollinearity (Hair 
et al., 2010). We also used the tolerance index of the 
independent variables which is computed as one minus 
the squared multiple correlation of the variable with 
other independent variables. Small tolerance indices (> 
0.2) indicate variable redundancy or a lack of variable’s 
influence on the dependent variable (O’Brien, 2007). 

Finally, we computed the d statistic (Durbin–Watson 
statistic) for each model, which ranges between zero and 
four and indicates the relationship between the residuals. 

2	 We recognize that a logistic loglinear regression model could also be 
a suitable analysis technique (see Ruczinski, Kooperberg, & LeBlanc, 
2003). It would certainly be worth testing that model in future studies.
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The d statistics below two suggest that the independent 
variables’ residuals are positively correlated and the d 
statistics close to four suggest that the independent 
variables’ residuals are negatively correlated. It is desirable 
that the d statistic not significantly deviate from two. 

Classification and Regression Trees (CART) Analysis

We performed the CART analysis on the Salford 
Predictive Modeler® (SPM) software,3 Version 7.0. We 
used the 12 independent variables generated by Coh-
Metrix and the discrete item difficulty as the dependent 
variable. We attempted to divide 20% testing and 80% 
training subsamples, but the program forced a partition 
of training (n = 202; 83.82%) and testing (n = 39; 
16.18%) subsamples. (Conventionally, the majority of 
the sample is used for training the CART algorithm in 
order to represent every subgroup in the data.)

Table 3:	 CART’s Data Set Information
Class Sample Number Percentage 
1 (low difficulty) Learn 80 39.60%

Test 16 41.03%
Total 96 39.83%

2 (high difficulty) Learn 122 60.40%
Test 23 58.97%
Total 145 60.17%

To choose the optimal tree, we used a number of 
quality control indices. We computed the sensitivity 
and specificity of the CART models to examine the 
performance of the models (Jensen, Muller, & Schafer, 
2000). Sensitivity or true positive proportion refers to 
the proportion of true positives which are accurately 
classified as having that condition—that is, 

No of true negatives + No of false positives

No of true negatives

For example, in this study sensitivity is the proportion of 
high difficulty items which have been correctly classified. 
Specificity is the proportion of true negatives which have 
been accurately identified—that is,

No of true positives + No of false negatives

No of true positives  

3	 We also tested IBM SPSS CART application which resulted in a relatively 
less accurate model.

A perfect classification would achieve 100% of sensitivity 
and specificity, but in reality there is a tradeoff between 
the two indices, which is represented graphically as a 
receiver operating characteristic (ROC) curve (see Swets, 
1996). 

ROC curves plot the proportion of true positives 
(TP) against false positives (FP). TP represents 
sensitivity, and FP (1 – specificity) represents true 
negatives. By examining the area under the ROC curve, 
which ranges from zero to unity, we collected further 
evidence as to which model was optimal and should 
be chosen over other models (Zhou, & Qin, 2005). 
In this study, we adopted the criteria proposed by the 
Department of Math of the University of Utah (n.d.) to 
interpret the area under the ROC curve 

(A)	0.90 – 1 = excellent
(B)	 0.80 – 0.90 = good 
(C)	0.70 – 0.80 = fair
(D)	0.60 – 0.70 = poor 
(E)	 0.50 – 0.60 = fail 

We further estimated misclassified 1 (low 
difficulty) and 2 (high difficulty) cases in the training 
and testing samples as well as the overall classification 
correct percentage. Finally, we estimated a normalized 
Importance Index for each independent variable, which 
indicates the weight of each independent variable in 
predicting the dependent variable and ranges between 
0.00% and 100%. Higher indices indicate that the 
variable has a higher contribution to predicting or 
classifying the dependent variable. 

Neural Networks 

We tested two classes of neural networks: Multilayer 
Perceptron (MLP) Artificial Neural Network (ANN) 
on IMB SPSS Neural Network computer package, 
Version 21, and Adaptive Neuro-Fuzzy Inference System 
(ANFIS) on MATLAB, Version 2012b. As previously 
discussed, ANFIS integrates fuzzy set theory and ANNs 
to emulate the data. By contrast, the MLP ANN does 
not impose the fuzzy sets, rendering a more exploratory 
approach than ANFIS. Both ANFIS and MLP ANN 
analyses consisted of 12 independent variables training 
and validation stages. Similar to the CART modelling, 
we partitioned the data into training (n = 192; 79.70%) 
and testing (n = 49; 20.30%) subsamples for both 
ANFIS and perceptron neural networks. (As stated, a 
larger portion of the sample was used for training the 
algorithm in order to represent every subgroup in the 
data). We estimated specificity, sensitivity, the area under 
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the ROC curve, Variable Importance Index, and the 
proportion of accurately classified items for the MLP 
ANN. 

In addition, a number of ANFIS models were 
initially generated, incorporating between one and 
12 hypothesized independent variables. In models 
comprising between two and 12 independent variables, 
numerous submodels consisting of all possible variable 
combinations were assessed to arrive at maximal 
solutions. To our knowledge, Importance Index or the 
area under the ROC curve has hardly been reported in 
ANFIS studies. Since ANFIS modelling is an extremely 
time-consuming analysis and the computer must run for 
long hours, we decided to initially identify the optimal 
ANFIS model based on the fit statistics that ANFIS 
researchers have proposed and subsequently estimate 
the area under the ROC curve only if the model fits 
well. Following Aryadoust (2013a, p. 46), we computed 
three goodness-of-fit indices for each ANFIS model, as 
follows:

(a)	Squared correlation coefficient (R2): A goodness-
of-fit index used to explore the fit of the model 
to the measured data. It ranges between zero and 
one, with values near one indicating good fit.

(b)	Root mean squared error (RMSE): An error 
measure. Lower RMSE values indicate smaller 
error terms. RMSE values tend to decrease with 
larger datasets.

(c)	Mean Absolute Error (MAE): A measure of error 
that computes all deviations from original data, 
regardless of their signs. (Aryadoust, 2013a, p. 
46)

We further computed three fit statistics which have been 
used in other ANFIS studies: 

(d)	Correlation between the expected and modeled 
(predicted) output (R): Values closer to unity 
indicate good fit.

(e)	Normalized mean square error (NMSE): A 
goodness-of-fit index which shows the difference 
between the fit of different models. Low NMSE 
values indicate that the model is performing well. 

(f )	Mean absolute error (MAE): A measure 
estimating how close the predicted are to actual 
output values. Values closer to zero are desirable. 

We examined various combinations of mathematical 
membership functions to determine the optimal 
solutions including gbellmf (generalized bell-shaped 
membership function), gaussmf (Gaussian curve 
membership function), gauss2mf (Gaussian combination 
membership function), dsigmf (difference between two 
sigmoidal functions membership function), psigmf 
(product of two sigmoidal membership functions), and 
pimf (∏-shaped membership function). 

Next, we deleted the fuzzy set functions from the 
ANFIS and tested a perceptron neural network model. 
Much of the statistics computed in the CART analysis 
was also computed for this model, including Importance 
Index, ROC curve and area under the curve, sensitivity, 
and specificity. Appendices A1 and A2 present the 
syntax input for IBM SPSS MLP ANN application and 
MATLAB ANFIS toolkit, respectively. 

Results

The Rasch Model

We subjected the test data to the Rasch model; 
estimated item difficulty and person ability measures; 
computed item/person reliability and separation 
indices as well as infit and outfit MNSQ values. 

Table 4:	 Item and Person Reliability and Separation Alongside Infit and Outfit MNSQ Indices of the Seven Tests
Item 

Reliability
Item 

Separation
Person 

Reliability
Person 

Separation
Average Item Infit 

MNSQ (SD)
Average Item 

Outfit MNSQ (SD)
Form 1 0.99 8.45 0.90 3.08 1.00 (0.09)a 0.99 (0.23)
Form 2 0.98 8.09 0.90 3.08 1.00 (0.11) 1.00 (0.23)
Form 3 0.96 5.16 0.90 3.08 1.00 (0.08) 0.99 (0.22)
Form 4 0.98 7.83 0.90 2.38 1.00 (0.11) 0.90 (0.20)
Form 5 0.99 9.05 0.90 3.03 0.99 (0.11) 1.05 (0.30)
Form 6 0.98 6.57 0.89 2.87 1.00 (0.11) 1.00 (0.17)
Form 7 0.98 7.45 0.90 3.07 1.00 (0.13) 1.01 (0.22)
Note: a standard deviation of the fit statistics
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Overall, all items and persons fitted the Rasch model 
and the test forms all had significantly high item and 
person reliability. For example, Table 4 shows that 
Form 5 had the highest item separation index (9.05; 
reliability = 0.99), and a relatively high person separation 
index (3.03; reliability = 0.90), hence nine and three 
statistically distinguishable item difficulty and person 
ability strata, respectively. Form 5 items fit the model 
well, with an average item infit and outfit MNSQ of 
0.99 and 1.05, respectively. Appendix A1 presents the 
item person maps of the seven test forms. 

Linear Regression Model

Table 5 gives the VIF, Tolerance, t values along 
with their significance level, and the β coefficient for 
the Enter regression model. The variables influencing 
the dependent variable are words before the main verb 
and noun and verb hypernymy. The VIF indices of 
these variables are below five (1.218 and 1.424 < 5) and 
Tolerance indices are close to unity (0.821 and 0.702 
> 0.2), indicating the lack of multicollinearity. The d 
statistic of the model was 2.094, also supporting the lack 
of multicollinearity. 

Of the two influential independent variables, the 
hypernymy index has a greater impact on item difficulty, 
as indicated by its β coefficient which is -0.199. The 
negative sign indicates an inverse relationship where 
the higher the noun and verb hypernymy, the lower the 

difficulty level. The rest of the independent variables 
would make no contribution to the item difficulty. 
The R, R2 and adjusted R2 values of this models were 
0.476, 0.227, and 0.183, respectively. That is, the two 
independent variables can predict 18.3% of the variance 
in the data. 

The regression models built by using the Remove, 
Stepwise, and Backward methods were identical to the 
Enter method (as expected), indicating that the optimal 
linear regression model for this data would include two 
independent variables regardless of the model: words 
before the main verb and noun and verb hypernymy. 

CART Model

We applied CART to determine the influential 
independent variables affecting test item difficulty. The 
optimal model has an R2 index of 0.240, indicating that 
the independent variables in the model accounted for 
24% of the variance in the dependent variables. 

The splitting rules of the CART model (training 
data) are presnted in Figure 3. The topmost node 
includes temporality, which splits the data into two child 
nodes: the left node includes 54 test items (class 1 = 36; 
class 2 = 16) with a temporality index equal to or below 
0.50 and the right node includes 148 items (class 
42 = 36; class 2 = 106) with a temporality greater than 
0.50. The data in these nodes are further partitioned 
downward by the other independent variables. 

Table 5:	 Tolerance, VIF, t Values, Significance Level, and β Coefficients for the Enter Regression Model
Tolerance VIF t value Significance βCoefficient

(Constant) NA NA 4.138 0.000 NA
(a)	 Word count 0.455 2.200 -0.039 0.969 -0.003
(b)	 Temporality 0.361 2.767 1.808 0.072 0.176
(c)	 Content word overlap  

(adjacent sentences) 0.506 1.975 0.624 0.533 0.051

(d)	 Average givenness 0.276 3.627 -1.559 0.120 -0.174
(e)	 Type-token ratio 0.699 1.431 -1.471 0.143 -0.103
(f )	 Logical connectives incidence 0.846 1.182 0.174 0.862 0.011
(g)	 Incidence of causal verbs 0.900 1.111 -0.068 0.946 -0.004
(h)	 Words before the main verb 0.821 1.218 2.334 0.020 0.151
(i)	 Prepositional phrase density 0.834 1.198 1.412 0.159 0.090
(j)	 Verb incidence 0.803 1.246 1.267 0.206 0.083
(k)	 Noun and verb hypernymy 0.702 1.424 -2.847 0.005 -0.199
(l)	 Flesch-Kincaid grade level 0.619 1.617 -0.267 0.790 -0.020
Predicted item difficulty 0.476 2.101 2.609 0.010 0.221
Note: VIF = variance inflation factor
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Figure 3:	 Classification and regression tree (CART) model of the  training data (R2 = 240).
Legend: Verb = Verb incidence. LEFTEBMEDDED = Words before the main verb. 
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Table 6 presents the classification results in the 
learning and test subsamples. Overall, the accuracy 
of classification of class 1 was higher for the training 
subsample (n = 63 out of 80 or 78.75%) than the testing 
subsample (n = 8 out of 16 or 50%). By contrast, the 
accuracy of classification of class 2 was higher for the 
testing subsample (n = 17 out of 23 or 78.75%) than the 
training subsample (n = 75 out of 122 or 50%). 

The higher the proportion of the misclassified cases, 
the higher their corresponding relative cost indices. 
For example, the relative cost of class 1 in the testing 
subsample is 0.50, which is the highest, and the relative 
cost of class 2 in the learning subsample is 0.155, which 
is the lowest. Table 6 also gives specificity and sensitivity 
statistics. Specificity of the learning sample is higher 
than that of the testing sample (78.75% > 50.00%), but 
the sensitivity of the testing sample is greater than the 
learning sample (73.91% > 61.48%). The area under the 
ROC curve was 0.78 in the learning subsample, which is 

regarded as fair (closer to good) and 0.60 in the testing 
sample which is poor. 

Table 7 presents the nine variables which influenced 
item difficulty to varying degrees and three variables with 
no importance. Temporality had the highest influence 
as indicated by its Normalized Importance Index (100), 
followed by 

(a)	latent semantic analysis (the average givenness of 
each sentence) with the Normalized Importance 
Index of 94.83, 

(b)	word count (Normalized Importance 
Index = 53.46), 

(c)	content word overlap (Normalized Importance 
Index = 47.22), 

(d)	Flesch-Kincaid grade level (Normalized 
Importance Index = 42.07), 

Table 6:	 Classification Accuracy, Specificity, Sensitivity, and Relative Cost Estimated by the CART Model

Class
No. of 
Cases

Accurately 
Classified 

Cases Percentage
Relative 

Cost Specificity Sensitivity ROC

Learning
1a 80 63 78.75% 0.155
2b 122 75 61.48% 0.387

Overall 202 138 68.32% 78.75% 61.48% 0.78

Testing
1 16 8 50% 0.50
2 23 17 73.91% 0.26

Overall 39 25 64.10% 50.00% 73.91% 0.60
Note:	 a low-difficulty items
	 b high-difficulty items

Table 7:	 The CART-Estimated Importance of Coh-Metrix Variables in Classifying Item Difficulty  
Variable Importance
(a)	 Temporality (a text easability index) 100.00
(b)	 Average givenness of each sentence (a latent semantic analysis or LSA index) 94.83
(c)	 Word count 47.22
(d)	 Flesch-Kincaid grade level 42.07
(e)	 Words before the main verb (an index of syntactic complexity) 17.50
(f )	 Verb incidence 15.80
(g)	 Noun and verb hypernymy 14.28
(h)	 Type-token ratio 12.14
(i)	 Prepositional phrase density 6.97
(j)	 Incidence of causal verbs 0.00
(k)	 Logical connectives incidence 0.00
(l)	 Content word overlap 0.00
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(e)	syntactic complexity measured by the words 
before the main verb (Normalized Importance 
Index = 17.50), 

(f )	verb incidence (Normalized Importance 
Index = 15.80), 

(g)	noun and verb hypernymy (Normalized 
Importance Index = 14.28), 

(h)	type-token ratio (Normalized Importance 
Index = 12.14), and 

(i)	prepositional phrase density (Normalized 
Importance Index = 6.97). 

However, incidence of causal verbs, content word 
overlap, and logical connectives incidence made no 
contribution to test item difficulty. 

Neural Networks

We analyzed the data using ANFIS and Perceptron 
Neural Network models. The results are reported in the 
following sections. 

MLP Neural Network

The Perceptron Neural Network diagram comprised 
12 input variables, four neurons in the hidden layer, and 
two output levels (low and high item difficulty levels). 
The input variables comprised word count, temporality, 
content word overlap, LSA (Latent Semantic Analysis), 
type-token ratio, logical connectives, causal verbs 
and prepositions, left embeddedness of the sentence, 
prepositional phrase, verb incidence, hypernymy, and 
Flesch Kincaid grade level. 

Of the 241 items, 192 (79.7%) were used to train 
the network and 49 (20.3%) were used to test the 
network. Overall, the network had a fairly high accuracy, 
evidenced by the percentage of incorrect classifications in 
the training and testing stages which was 14% and 16%, 
respectively. 

Table 8 gives the weight indices of the input 
and output variables. Unlike the β coefficients of the 
regression models, the ANN weight statistics have 
intra-variable variation. For example, the weights of 
word count level 1 across four neurons in the hidden 
layer, notated as H(1:1-4), is 0.472, -0.378, 0.118, and 
0.069, indicating some degree of nonlinearity in the 
data. There is relatively high intra-variable variance 
in some inputs such as Flesch Kincaid grade level 2 
(-1.081, -0.692, -0.939, and -0.008), indicating high 
nonlinearity between this variable and item difficulty. 
By contrast, intra-variable variance is relatively low in, 

for example, Word count level 3 (0.280, 0.086, 0.081, 
and 0.216), indicating some degree of linearity between 
this variable and item difficulty. Similarly, the weight of 
the connection between the hidden and output layers 
has a relatively large range, indicating high nonlinearity. 
For example, neuron H(1:1) gives 0.935 to low difficulty 
items (Difficulty = 1) and -0.967 to high-difficulty items 
(Difficulty = 2). 

Table 8 also presents bias statistics for hidden 
and output layers. As previously noted, bias helps the 
network to learn the underlying patterns of the data 
more efficiently. The bias coefficients for the neurons in 
the hidden layer are 0.262, -0.630, -0.181, and -0.716, 
showing some degree of variation. The bias coefficients 
for the neurons in the output layer are -0.270 and 
-0.241, which suggests relatively less variation. 

Table 9 presents the ANN classification results for 
the learning and testing subsamples. Unlike the CART 
model, the accuracy of classification of class 2 was higher 
than the accuracy of class 1 for both the training (n = 
105 out of 118 or 89.00%) and testing subsamples (n = 
23 out of 27 or 89.00%). The accuracy of classification 
of class 1 for the training subsample was 81.10% (n 
= 60 out of 74) which is close to the accuracy level of 
the testing subsample (n = 18 out of 22 or 81.80%). 
The overall accuracy of classification in the learning 
and testing samples was 85.90% and 83.70%, which is 
significantly higher than the CART modelling. 

Table 9 also gives specificity and sensitivity statistics. 
Specificity of both the learning and testing subsamples 
is significantly high (81.10% and 81.80%, respectively), 
and so is the sensitivity statistics of both the learning 
and testing samples (89.00% & 85.20%). This provides 
further evidence that the ANN model outperformed the 
CART analysis significantly. The area under the ROC 
in the learning and testing subsamples curve is 0.900, 
which is considered excellent (Department of Math of 
the University of Utah, n.d.). 

Finally, we estimated the Normalized Importance 
Index for the input variables. Table 10 presents the 12 
variables which influenced item difficulty to varying 
degrees. Noun and verb hypernymy had the highest 
influence as indicated by its Normalized Importance 
Index (100), followed by Flesch-Kincaid grade 
level (Normalized Importance Index = 99.40). The 
Normalized Importance Index of the remainder of the 
input variables gradually decreases but never reaches 
zero, which runs counter to the CART modelling 
results: average givenness of each sentence (Normalized 
Importance Index = 77.00), prepositional phrase density 
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Table 8:	 Weight Indices of the Input and Output Variables of the Neural Network

Predictors in the input layer

Predicted
Hidden Layer Output Layer

H(1:1) H(1:2) H(1:3) H(1:4) Difficulty=1 Difficulty=2

In
pu

t L
ay

er

(Bias) 0.262 -0.630 -0.181 -0.716
[Word count=1] 0.472 -0.378 0.118 0.069
[Word count=2] -0.313 -0.312 -0.813 -0.325
[Word count=3] 0.280 0.086 0.081 0.216
[Temporality=0] 0.628 -0.315 -0.428 -0.080
[Temporality=1] -0.530 0.531 0.569 0.106
[Temporality=2] -0.121 -0.852 -0.815 -0.385
[Content word overlap=0] 0.364 0.495 -0.079 0.399
[Content word overlap=1] 0.349 -0.652 -0.050 -0.930
[Given-new sentences=0] 0.876 0.166 -0.869 0.178
[Given-new sentences=1] -0.384 0.781 0.139 0.171
[Given-new sentences=2] -0.314 -0.670 0.890 -0.455
[type-token ratio=1] -0.031 0.027 -0.554 0.050
[type-token ratio=2] 0.275 -0.611 0.113 -0.138
[Logical connectives=0] 1.105 0.194 -0.731 -0.890
[Logical connectives=1] -0.690 -0.528 0.032 0.490
[Causal verbs and particles=0] 0.546 0.564 -0.320 0.112
[Causal verbs and particles=1] -0.358 -0.452 -0.128 -0.281
[Left embeddedness=0] 0.418 -0.492 -0.737 -0.056
[Left embeddedness=1] -0.866 0.495 0.113 -0.536
[Left embeddedness=2] -0.072 0.016 -0.497 -0.175
[Preposition phrase density=0] 0.189 -0.767 -0.207 0.004
[Preposition phrase density=1] -0.522 -0.560 0.362 -0.020
[Preposition phrase density=2] 0.377 0.492 0.485 0.332
[Preposition phrase density=3] -0.839 0.258 -0.082 -0.825
[Verb incidence=1] 0.923 0.096 0.210 0.592
[Verb incidence=2] 0.202 0.342 0.624 -0.111
[Verb incidence=3] 0.271 0.296 -0.092 0.123
[Verb incidence=4] -0.845 -0.366 -0.328 -0.698
[Hypernymy=2] -1.698 0.086 -0.236 -1.219
[Hypernymy=3] 0.995 0.230 -0.714 0.167
[Hypernymy=4] 0.341 -0.942 0.402 0.154
[Hypernymy=5] 0.119 -0.138 -0.241 -0.144
[Flesch Kincaid grade level=0] 1.086 0.132 -0.489 -0.570
[Flesch Kincaid grade level=1] -0.016 0.989 0.532 -1.060
[Flesch Kincaid grade level=2] -1.081 -0.692 -0.939 -0.008
[Flesch Kincaid grade level=3] 0.005 -0.212 0.515 0.224
[Flesch Kincaid grade level=4] 0.705 -0.574 -0.108 -0.196
[Flesch Kincaid grade level=5] -0.472 0.334 -0.171 0.257

H
id

de
n 

La
ye

r (Bias) -0.270 -0.241
H(1:1) 0.935 -0.967
H(1:2) -1.477 1.450
H(1:3) 0.965 -1.539
H(1:4) 0.420 -0.650
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(Normalized Importance Index = 62.30), verb incidence 
(Normalized Importance Index = 61.20), temporality (a 
text easability index) (Normalized Importance Index = 
59.40), words before the main verb (an index of syntactic 
complexity) (Normalized Importance Index = 59.20), 
word count (Normalized Importance Index = 48.30), 
logical connectives incidence (Normalized Importance 
Index = 46.70), type-token ratio (Normalized 
Importance Index = 39.50), incidence of causal verbs 
and particles (Normalized Importance Index = 36.80), 
and content word overlap adjacent sentences 
(Normalized Importance Index = 33.60). Overall, the 
ANN modelling yielded different Importance Indices, 
higher accuracy, higher sensitivity, and higher specificity 
than the CART modeling and outperformed the linear 
regression model. 

ANFIS Modelling 

We combined the fuzzy membership functions with 
the ANN model to test whether the misclassified cases 
could be improved. Using various membership functions 
in the fuzzification phase, we initially trained a large 
number of ANFIS networks containing between one 
and 12 independent variables. The models were then 
tested on a test subsample to examine their precision. 
Table 11 present the best two-variable ANFIS models. 
Model 1 has the best fit to the data in both learning 
and testing stages: it fits the learning data moderately 
well (R = 0.801; R2 = 0.642; NMSE = 0.357; RMSE = 
0.426; MAE = 0.350), but its fit to the testing data drops 
significantly (R = 0.427; R2 = 0.179; NMSE = 0.820; 
RMSE = 0.437; MAE = 0.392). Variable 1 (word count) 
appeared in the top five models in the learning and 

Table 9:	 Classification Accuracy, Specificity, and Sensitivity Estimated by the ANN Model

Class
No. of 
Cases

Accurately 
Classified 

Cases Percentage
Relative 

Cost Specificity Sensitivity ROC

Learning 
(training)

1a 74 60 81.10%
2b 118 105 89.00%

Overall 192 165 85.90% NA 81.10% 89.00% 0.900

Testing
1 22 18 81.80%
2 27 23 85.20%

Overall 49 41 83.70% NA 81.80% 85.20% 0.900
Note:	 a low-difficulty items
	 b high-difficulty items

Table 10:	The ANN-Estimated Importance of Coh-Metrix Variables in Classifying Item Difficulty
Variable Importance
(a)	 Noun and verb hypernymy 100.00
(b)	 Flesch-Kincaid grade level 94.83
(c)	 Average givenness of each sentence (a latent semantic 

analysis or LSA) 47.22

(d)	 Prepositional phrase density 42.07
(e)	 Verb incidence 17.50
(f )	 Temporality (a text easability index) 15.80
(g)	 Words before the main verb (an index of syntactic 

complexity) 14.28

(h)	 Word count 12.14
(i)	 Logical connectives incidence 6.97
(j)	 Type-token ratio 0.00
(k)	 Incidence of causal verbs and particles 0.00
(l)	 Content word overlap in adjacent sentences 0.00
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testing stages, indicating its significance in determining 
the amount of output. Similarly, Variable 12 (Flesch-
Kincaid grade level) had a significant influence over the 
output, since it emerged in Model 1 (the best fitting 
model) as well as Models 5 and 18. We tested other 
possible combinations in an attempt to determine the 
best fitting model. Because the remainder of the models 
performed poorly in the testing stage, they are not 
reported in Table 11. It is important to note that the best 
fitting models presented in the table used generalized bell 
curve membership function (gbellmf) in the fuzzification 
stage.

Table 12 presents the best three-variable ANFIS 
models. Although Models 2, 3, and 4 yielded larger R2 
values during learning, due to their relatively poorer fit 

in the testing stage, we opted for Model 1 which fits the 
learning data moderately well (R = 0.807; R2 = 0.651; 
NMSE = 0.348; RMSE = 0.421; MAE = 0.341) but 
its fit to the testing data drops significantly (R = 0.430; 
R2 = 0.184; NMSE = 0.815; RMSE = 0.435; 
MAE = 0.383). As in the best two-variable models, 
Variables 1 (word count) and 12 (Flesch-Kincaid grade 
level) appeared in the three-variable models in the 
learning and testing stages, indicating their significance 
in determining the amount of output. The remainder 
of the models performed poorly in both the learning 
and testing stage and will not be reported here. Overall, 
the fit statistics of the three-variable models indicated 
that they did not classify the low and high-difficulty 

Table 11:	 Best Two-Variable ANFIS Models Generated in the Learning Stage and Validated in the Testing Stage

Model
Input 

Variables R R Squared NMSE RMSE MAE
Membership  

Function
Learning
1* 1, 12 0.801 0.642 0.357 0.426 0.350 gbellmf
2 1, 2 0.796 0.634 0.365 0.431 0.372 gbellmf
3 1, 11 0.790 0.628 0.371 0.435 0.365 gbellmf
4 1, 10 0.778 0.605 0.394 0.447 0.389 gbellmf
5 1, 4 0.775 0.601 0.398 0.450 0.392 gbellmf
6 2, 11 0.790 0.630 0.360 0.429 0.359 gbellmf
7 2, 5 0.790 0.629 0.370 0.430 0.370 gbellmf
8 3, 11 0.776 0.603 0.396 0.449 0.376 gbellmf
9 4, 11 0.786 0.618 0.381 0.440 0.365 gbellmf
10 4, 5 0.781 0.611 0.388 0.444 0.382 gbellmf
11 5, 11 0.790 0.630 0.369 0.433 0.363 gbellmf
12 5, 12 0.786 0.618 0.381 0.440 0.375 gbellmf
13 6, 11 0.787 0.620 0.370 0.439 0.370 gbellmf
14 7, 11 0.787 0.620 0.379 0.430 0.370 gbellmf
15 8, 11 0.783 0.614 0.385 0.443 0.367 gbellmf
16 9, 11 0.775 0.601 0.398 0.450 0.378 gbellmf
17 10, 11 0.784 0.615 0.384 0.442 0.367 gbellmf
18 11, 12 0.786 0.618 0.381 0.440 0.364 gbellmf
Testing
1* 1, 12 0.427 0.179 0.820 0.437 0.392 gbellmf
2 1, 2 0.386 0.137 0.862 0.448 0.415 gbellmf
5 1, 4 0.320 0.102 0.897 0.457 0.426 gbellmf
3 1, 11 0.429 0.177 0.822 0.437 0.395 gbellmf
12 5, 12 0.308 0.094 0.905 0.459 0.426 gbellmf
Note. * Best model. R = correlation between estimated and actual output; NMSE = normalized mean square error; RMSE = root-mean-square 
error; MAE = mean absolute error. gbellmf = Generalized bell curve membership function.

Variables: 1 = Word count; 2 = Temporality; 3 = Content word overlap (adjacent sentences); 4 = Average givenness; 5 = Type-token ratio; 
 6 = Logical connectives incidence; 7 = Incidence of causal verbs; 8 = Words before the main verb; 9 = Prepositional phrase density;  
10 = Verb incidence; 11 = Noun and verb hypernymy; 12 = Flesch-Kincaid grade level.
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items with high accuracy and, as a result, we tested other 
combinations. 

We postulated a number of four-variable ANFIS 
models, the best-fitting of which are presented in 
Table 13. We examined all models to identify the model 
that had the best fit in both learning and training stages. 

Several models had reasonably good fit to the learning 
data, but they fitted the test data poorly. We opted 
for Model 6 which fits the learning data moderately 
well (R = 0.823; R2 = 0.678; NMSE = 0.321; 
RMSE = 0.404; MAE = 0.316) even though its fit to the 
testing data drops significantly (R = 0.318; R2 = 0.163; 

Table 12:	 Best Three-Variable ANFIS Models Generated in the Learning Stage and Validated in the Testing Stage 

Model
Input 

Variables R R Squared NMSE RMSE MAE
Membership 

Function
Learning
1* 1, 5, 12 0.807 0.651 0.348 0.421 0.341 gbellmf
2 1, 2, 12 0.825 0.682 0.317 0.402 0.324 gbellmf
3 1, 10, 12 0.827 0.685 0.314 0.400 0.309 gbellmf
4 1, 2, 11 0.826 0.68 0.316 0.401 0.324 gbellmf
Testing
1* 1, 5, 12 0.430 0.184 0.815 0.435 0.383 gbellmf
2 1, 2, 12 0.392 0.150 0.849 0.444 0.393 gbellmf
3 1, 10, 12 0.310 0.09 1.560 0.603 0.445 gbellmf
4 1, 2, 11 0.023 0.00 3.320 0.879 0.472 gbellmf
Note. * Best model. R = correlation between estimated and actual output; NMSE = normalized mean square error; RMSE = root-mean-square 
error; MAE = mean absolute error. gbellmf = Generalized bell curve membership function.

Variables: 1 = Word count; 2 = Temporality; 3 = Content word overlap (adjacent sentences); 4 = Average givenness; 5 = Type-token ratio; 
 6 = Logical connectives incidence; 7 = Incidence of causal verbs; 8 = Words before the main verb; 9 = Prepositional phrase density;  
10 = Verb incidence; 11 = Noun and verb hypernymy; 12 = Flesch-Kincaid grade level.

Table 13:	Best Four-Variable ANFIS Models Generated in the Learning Stage and Validated in the Testing Stage 

Model
Input 

Variables R R Squared NMSE RMSE MAE
Membership 

Function
Learning
1 3, 4, 5, 12 0.818 0.669 0.330 0.409 0.325 gbellmf
2 2, 5, 7, 11 0.835 0.698 0.301 0.390 0.310 gbellmf
3 2, 4, 5, 12 0.839 0.704 0.295 0.387 0.302 gbellmf
4 2, 3, 5, 8 0.810 0.657 0.342 0.417 0.349 gbellmf
5 2, 3, 5, 7 0.809 0.654 0.345 0.410 0.351 gbellmf
6* 1, 5, 9, 12 0.823 0.678 0.321 0.404 0.316 gbellmf
7 1, 5, 7, 12 0.824 0.670 0.320 0.400 0.313 gbellmf
8 1, 2, 3, 5 0.815 0.665 0.334 0.412 0.340 gbellmf
Testing
1 3, 4, 5, 12 0.340 0.107 0.892 0.455 0.393 gbellmf
2 2, 5, 7, 11 0.381 0.113 0.886 0.454 0.375 gbellmf
3 2, 4, 5, 12 0.379 0.132 0.867 0.449 0.381 gbellmf
4 2, 3, 5, 8 0.362 0.131 0.868 0.449 0.416 gbellmf
5 2, 3, 5, 7 0.318 0.100 0.899 0.457 0.422 gbellmf
6* 1, 5, 9, 12 0.439 0.163 0.836 0.441 0.362 gbellmf
7 1, 5, 7, 12 0.355 0.100 0.899 0.457 0.379 gbellmf
8 1, 2, 3, 5 0.349 0.121 0.878 0.452 0.405 gbellmf
Note. * Best model. R = correlation between estimated and actual output; NMSE = normalized mean square error; RMSE = root-mean-square 
error; MAE = mean absolute error. gbellmf = Generalized bell curve membership function.

Variables: 1 = Word count; 2 = Temporality; 3 = Content word overlap (adjacent sentences); 4 = Average givenness; 5 = Type-token ratio; 
 6 = Logical connectives incidence; 7 = Incidence of causal verbs; 8 = Words before the main verb; 9 = Prepositional phrase density;  
10 = Verb incidence; 11 = Noun and verb hypernymy; 12 = Flesch-Kincaid grade level.
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NMSE = 0.836; RMSE = 0.441; MAE = 0.362). As in 
the best two-variable models, Variable 1 (word count), 
Variable 2 (Temporality), Variable 4 (Average givenness), 
Variable 5 (Type-token ratio), and Variable 12 (Flesch-
Kincaid grade level) surfaced in quite a few four-variable 
models in both the learning and testing stages, indicating 
their significance in determining the amount of output. 
The best four-variable model is the one which includes 
Variables 2, 3, 5, and 8. 

Regardless of the type of membership functions, the 
four-variable ANFIS models did not yield promising 
results. Accordingly, we examined five-variable models 
to identify the model that might give the best fit in 
both learning and training stages. Table 14 presents 10 
five-variable ANFIS models with reasonably good fit. 
Specifically, Model 1 fitted the test data moderately 
in the learning stage (R = 0.657; R2 = 0.432; 
NMSE = 0.567; RMSE = 0.369; MAE = 0.273) 
as well as the testing stage (R = 0.696; R2 = 0.457; 

NMSE = 0.542; RMSE = 0.354; MAE = 0.283). As 
in the best aforementioned models, Variables 1 (word 
count) and 12 (Flesch-Kincaid grade level) surfaced in 
quite a few four-variable models in both learning and 
testing stages. In addition, Variable 3 (Content word 
overlap) contributed to all models in the learning and 
testing stages. 

Finally, we tested six- through 12-variable ANFIS 
models, but we found poor fit in a great proportion of 
the models. Indeed, as the complexity of the models 
increases, ANFIS’s fit statistics decreased. Table 15 
presents the best fitting six-variable models generated in 
the learning stage and validated in the testing stage. 

Table 16 summarizes the best-fitting ANFIS models. 
It should be noted that even though they are entitled 
“best-fitting," their fit is relatively far from perfect. 
The five-variable model including Variables 1 (Word 
count), 3 (Content word overlap), 6 (Logical connectives 
incidence), 10 (Verb incidence), and 12 (Flesch-Kincaid 

Table 14:	Best Five-Variable ANFIS Models Generated in the Learning Stage and Validated in the Testing Stage 

Model
Input 

Variables R R Squared NMSE RMSE MAE
Membership 

Function
Learning
1* 1, 3, 6, 10, 12 0.657 0.432 0.567 0.369 0.273 gbellmf
2 1, 3, 6, 7, 12 0.557 0.308 0.691 0.408 0.333 gbellmf
3 1, 3, 5, 7, 12 0.530 0.281 0.718 0.416 0.346 gbellmf
4 1, 3, 5, 10, 12 0.599 0.359 0.640 0.393 0.309 gbellmf
5 1, 5, 7, 10, 12 0.611 0.373 0.626 0.388 0.302 gbellmf
6 1, 3, 7, 10, 12 0.598 0.356 0.643 0.393 0.311 gbellmf
7 1, 3, 4, 10, 12 0.630 0.397 0.602 0.381 0.290 gbellmf
8 3, 5, 6, 7, 12 0.495 0.245 0.754 0.426 0.363 gbellmf
9 1, 3, 4, 6, 12 0.579 0.335 0.664 0.400 0.320 gbellmf
10 1, 5, 6, 10, 12 0.633 0.400 0.599 0.380 0.290 gbellmf
Testing
1* 1, 3, 6, 10, 12 0.696 0.457 0.542 0.354 0.283 gbellmf
2 1, 3, 6, 7, 12 0.621 0.379 0.620 0.379 0.318 gbellmf
3 1, 3, 5, 7, 12 0.652 0.379 0.620 0.379 0.333 gbellmf
4 1, 3, 5, 10, 12 0.614 0.355 0.644 0.386 0.301 gbellmf
5 1, 5, 7, 10, 12 0.568 0.308 0.691 0.399 0.318 gbellmf
6 1, 3, 7, 10, 12 0.563 0.307 0.692 0.400 0.303 gbellmf
7 1, 3, 4, 10, 12 0.553 0.304 0.695 0.401 0.326 gbellmf
8 3, 5, 6, 7, 12 0.549 0.297 0.702 0.403 0.357 gbellmf
9 1, 3, 4, 6, 12 0.543 0.286 0.713 0.406 0.342 gbellmf
10 1, 5, 6, 10, 12 0.540 0.283 0.716 0.407 0.307 gbellmf
Note. * Best model. R = correlation between estimated and actual output; NMSE = normalized mean square error; RMSE = root-mean-square 
error; MAE = mean absolute error. gbellmf = Generalized bell curve membership function.

Variables: 1 = Word count; 2 = Temporality; 3 = Content word overlap (adjacent sentences); 4 = Average givenness; 5 = Type-token ratio; 
 6 = Logical connectives incidence; 7 = Incidence of causal verbs; 8 = Words before the main verb; 9 = Prepositional phrase density;  
10 = Verb incidence; 11 = Noun and verb hypernymy; 12 = Flesch-Kincaid grade level.
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grade level) was the best fitting ANFIS model developed 
and tested in this study. Appendix B1 presents the fuzzy 
set rules of the five-variable model.

Figure 4 presents the five-variable ANFIS model 
tested in the study. The difference between the ANFIS 
and ANN models lies in the membership functions 
assigned to the input. In this figure, the sceond 
column from the left side (white circles) represents the 
membership functions. Every input will take either a 
low or a high membership function and the fuzzification 
rules, which are represented by the blue circles, will be 

applied to them. The output will be defuzzified and the 
predicted values will be estimated. 

Discussion

This study was designed to examine the performance 
of three data mining methods: linear regression, 
classification and regression trees (CART) and two 
classes of artificial neural networks (ANNs): multilayer 
perceptron ANN and adaptive neuro-fuzzy inference 
system (ANFIS). The data came from the performance 

Table 15:	 Best Six-Variable ANFIS Models Generated in the Learning Stage and Validated in the Testing Stage 

Model
Input 

Variables R R Squared NMSE RMSE MAE
Membership 

Function
Learning
1* 1, 4, 5, 8, 9, 10 0.729 0.532 0.467 0.335 0.225 gbellmf
2 1, 5, 7, 8, 9, 10 0.608 0.370 0.629 0.389 0.303 gbellmf
3 1, 4, 5, 7, 8, 9 0.702 0.493 0.506 0.349 0.244 gbellmf
Testing
1* 1, 4, 5, 8, 9, 10 0.486 0.127 0.872 0.449 0.333 gbellmf
2 1, 5, 7, 8, 9, 10 0.355 0.086 0.913 0.459 0.393 gbellmf
3 1, 4, 5, 7, 8, 9 0.387 0.007 0.992 0.479 0.351 gbellmf
Note. * Best model. R = correlation between estimated and actual output; NMSE = normalized mean square error; RMSE = root-mean-square 
error; MAE = mean absolute error. gbellmf = Generalized bell curve membership function.

Variables: 1 = Word count; 2 = Temporality; 3 = Content word overlap (adjacent sentences); 4 = Average givenness; 5 = Type-token ratio; 
 6 = Logical connectives incidence; 7 = Incidence of causal verbs; 8 = Words before the main verb; 9 = Prepositional phrase density;  
10 = Verb incidence; 11 = Noun and verb hypernymy; 12 = Flesch-Kincaid grade level.

Table 16:	The Best Fitting ANFIS Models 

Model
Input 

Variables R R Squared NMSE RMSE MAE
Membership 

Function
Learning
Two-variable 1, 12 0.801 0.642 0.357 0.426 0.350 gbellmf
Three-variable 1, 5, 12 0.807 0.651 0.348 0.421 0.341 gbellmf
Four-variable 1, 5, 9, 12 0.823 0.678 0.321 0.404 0.316 gbellmf
Five-variable* 1, 3, 6, 10, 12 0.657 0.432 0.567 0.369 0.273 gbellmf
Six-variable 1, 4, 5, 8, 9, 10 0.729 0.532 0.467 0.335 0.225 gbellmf
Testing
Two-variable 1, 12 0.427 0.179 0.820 0.437 0.392 gbellmf
Three-variable 1, 5, 12 0.430 0.184 0.815 0.435 0.383 gbellmf
Four-variable 1, 5, 9, 12 0.439 0.163 0.836 0.441 0.362 gbellmf
Five-variable* 1, 3, 6, 10, 12 0.696 0.457 0.542 0.354 0.283 gbellmf
Six-variable 1, 4, 5, 8, 9, 10 0.486 0.127 0.872 0.449 0.333 gbellmf
Note. * Best model. R = correlation between estimated and actual output; NMSE = normalized mean square error; RMSE = root-mean-square 
error; MAE = mean absolute error. gbellmf = Generalized bell curve membership function.

Variables: 1 = Word count; 2 = Temporality; 3 = Content word overlap (adjacent sentences); 4 = Average givenness; 5 = Type-token ratio; 
 6 = Logical connectives incidence; 7 = Incidence of causal verbs; 8 = Words before the main verb; 9 = Prepositional phrase density;  
10 = Verb incidence; 11 = Noun and verb hypernymy; 12 = Flesch-Kincaid grade level.
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of 5,039 test takers on seven forms of the MET listening 
test. After screening the data, we used 242 items 
alongside their linguistic features estimated by Coh-
Metrix. 

Linear Regression Modelling

Initially, the assumptions of regression modelling 
including normality, lack of multicollinearity, and 
homoscedasticity were tested. Next, we estimated a 
regression model where 12 input variables were used to 
predict listening test item difficulty. We tested Enter, 
Remove, Stepwise, and Backward model selection 
procedures to identify the best fitting model. The 
methods provided highly similar solutions, the best 
model comprising two input variable (i.e., words before 
the main verb and noun and verb hypernymy) which 
explained 18.3% of the variance in the data. 

The relatively low prediction power of the regression 
model in the present study is in the agreement with some 
of the previous Coh-Metrix studies such as McNamara, 
Crossley, McCarthy’s study (2010) where the input 
variables accounted for 20% of the variance in the 
output variable, but inconsistent with, for example, Guo, 
Crossley, and McNamara’s (2013) recent study where 

the Coh-Metrix variables account for more than half 
of the variance of the output. One reason for the low 
prediction power of the regression analysis in the present 
study might be the limitation of the texts analyzed 
by Coh-Metrix. Although every attempt was made 
to generate sufficiently lengthy texts, the texts related 
to each of the test items can be viewed as of medium 
lengths (approximately between 50 to 100 words), 
which is shorter than the texts used in previous Coh-
Metrix analyses. Acknowledging that this could have 
affected the results of the analysis, we presume linear 
regression would be less efficient when the data is less 
than ideal. Therefore, it might be said that the output of 
linear regression models might not necessarily point to 
problems in the postulated theory tested; rather, it might 
suggest the inefficiency and imprecision of the statistical 
method and the requirement of using a more rigorous 
data mining technique that does not fall prey to the 
inherent features of the data. 

CART Modelling

The precision of the CART modelling analysis 
was examined through specificity and sensitivity 
indices alongside the area under the ROC curve and 

Figure 4:	 Structure of the Five-Variable ANFIS model
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the proportion of accurately and inaccurately classified 
cases. The accuracy of the CART model was around 
68% and 64% for the learning and testing subsamples, 
respectively. Although the area under the ROC curve was 
relatively small, the classification accuracy in the study is 
greater than, for example, Rupp et al.’s (2001) study. 

One of the advantages of this study is the validation 
method of the accuracy of the model. We partitioned 
the data into learning and testing subsamples, thereby 
precluding the model from overfitting. In their CART 
study of two reading comprehension texts, Gao and 
Roger (2011) reported a high accuracy and prediction 
power, but did not test the estimated model on a testing 
sample. The highly accurate results can be attributed to 
overfitting which occurs when the estimated model is not 
validated across a testing sample (Steinberg et al., 1998). 
It is suggested that future researchers either use a testing 
sample or perform k-fold validation on their data so as to 
prevent overfitting (Breiman et al., 1984). 

CART’s outputs were relatively more consistent with 
the theoretical postulations than the results of the linear 
regression model. The precision of CART in classifying 
low- and high-difficulty test items is in line with previous 
CART research conducted by, for example, Brodley, and 
Utgoff (1995), Frank, Wang, Inglis, Holmes, and Witten 
(1998), and Kim and Loh (2001).

A point concerning the choice of CART computer 
packages is in place. The first split of CART models 
has a significant impact on the tree structure. If the 
input variable has no effect on the output variable, 
the CART tree will be less precise. It is important to 
choose an algorithm which can identify the best splitter 
for the topmost node (Hsieh, Hsiao, Chang, Wang, & 
Fann, 2011). We found that the SPM algorithm would 
provide a more precise solution than, for example, the 
SPSS CART algorithm. This, however, does not indicate 
our endorsement of SPM products or underestimating 
the SPSS algorithm. We suggest that future researchers 
consider the powerful CART algorithm if achieving high 
precision is a priority in their research. 

Artificial Neural Networks (ANNs)

We initially tested an MLP ANN with one 
hidden layer, which proved to be the most precise and 
substantively reliable model among the data mining 
models assessed. It achieved excellent classification 
accuracy and precision in both the learning and 
testing subsamples. The MLP ANN analysis showed 
that all posited input variables would contribute to 

differentiating test items. That is, if we have the 12 
linguistic features of test items, we can predict with a 
high degree of accuracy whether the test item will be 
difficult or easy. ANNs have achieved significantly high 
precision over regression models in previous research 
(Crone, Guajardo, & Weber, 2006). The precision is 
attributable to the flexible structure of the models and 
their powerful algorithms. However, ANN has hardly 
been used in language assessment, although it offers 
significant advantages over conventional approaches such 
as discriminant analysis. 

By contrast, ANFIS modelling did not achieve 
the expected precision. The best model comprised five 
variables and displayed moderate fit to both learning 
and testing subsamples, which runs counter to the 
study conducted by Aryadoust (2013a). It might be 
that ANFIS can perform well in data with small size 
but poorly in large data sets. The poor performance 
on ANFIS might be due to the fuzzy set components, 
because the ANN with no fuzzy set functions proved to 
have a high precision. 

In all, we found MLP ANN had high precision, 
followed by CART, ANFIS, and linear regression, 
respectively. The study shows that the type of data 
analysis techniques can exert a significant impact on the 
results and claims. It is plausible to presume that less 
precise statistical models would have the potential to 
refute the otherwise well-established hypotheses and/
or theories, thereby convincing the researcher that the 
postulated models are inaccurate or less useful than 
expected. Caution should be exercised when choosing 
prediction and classification models. 

Further Predictive / Classification Models 

This study set out to compare the three previously 
discussed data mining approaches. Future research 
can assess the predictive power of logistic regression, 
generalized linear models (see, for example, Cheong, 
2006), hierarchical linear models (see, for example, 
Barkaoui, 2013), generalized linear mixed method, 
genetic-programing symbolic regression (see, for 
example, Aryadoust, 2014), and automatic linear 
modelling (see, for example, Aryadoust, 2013b). 
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Implications of the Findings for Listening 
Comprehension Assessment

As earlier noted, choosing the right statistical model 
for data mining is of paramount importance. Choosing 
linear regression over other models would result in 
a significantly different and less accurate theory. In 
this section, we examine the results of the MLP ANN 
alongside the CART model as presented in Table 17, 
since they provided the most plausible and intuitive 
solutions. 

The MLP ANN modelling showed that all 
postulated input variables would exert a sizeable impact 
on the difficulty of the test items. The CART model 
also yielded similar results, although it estimated the 
Importance Index of zero for logical connectives, causal 
verbs and prepositions, and content word overlap, which 
had the lowest Importance Index in the MLP ANN 
analysis. The input variables recognized as influential 
in both models had nevertheless different Importance 
Indices. For example, the most important variable in 
the MLP ANN analysis was noun and verb hypernymy, 
whereas hypernymy had one of the lowest Importance 
Indices in the CART modelling. By contrast, the 
most important variable in the CART analysis was 
temporality—a text easability index—which had a 
medium Importance Index in the MLP ANN analysis. 

Previous research has yielded inconclusive results 
concerning the effect of hypernymy on texts. For 
example, Crossley and McNamara (2010) argued that 

lower hypernymy indices indicate the use of more 
general words, whereas higher hypernymy values indicate 
the use of fewer general words. Hypernymy has been 
shown to improve alongside vocabulary knowledge over 
time, suggesting that high-ability English learners would 
have a fairly extended hypernymy knowledge (Crossley, 
Salsbury, & McNamara, 2009). This finding coupled 
with the findings of the present study would indicate 
that hypernymy can help distinguish low- and high-
ability listening test takers. 

Although previous research showed that the Coh-
Metrix reading difficulty index can estimate the level of 
text difficulty more accurately than the Flesch-Kincaid 
grade level index (Crossley & McNamara, 2010; 
Crossley et al., 2011), in this study we found that the 
latter index would discriminate low- and high-difficulty 
listening items. We presume that the Coh-Metrix 
reading difficulty index might be less sensitive in 
short texts, whereas Flesch-Kincaid grade level index 
might be sensitive to the difficulty of short texts. Since 
Flesch-Kincaid grade level index has rarely been used 
for estimating the difficulty of listening texts, it is 
highly desirable that this index alongside its counterpart 
Coh-Metrix index be studied in future listening research. 

Average givenness of each sentence, which measures 
the semantic overlap between sentences, was chosen 
because it had a high correlation with the item difficulty 
indices and because the item stems, options, and 
necessary information had some semantic overlap in 

Table 17:	 Variable Importance Indices Estimated by the MLP ANN and CART Models 

Variable ANN’s Normalized 
Importance

CART’s Normalized 
Importance

(a)	 Noun and verb hypernymy 100.00 14.28
(b)	 Flesch-Kincaid grade level 99.40 42.07
(c)	 Average givenness of each sentence (a latent semantic 

analysis or LSA) 77.00 94.83

(d)	 Prepositional phrase density 62.30 6.97
(e)	 Verb incidence 61.20 15.80
(f )	 Temporality (a text easability index) 59.40 100.00
(g)	 Words before the main verb (an index of syntactic 

complexity) 59.20 17.50

(h)	 Word count 48.30 47.22
(i)	 Logical connectives incidence 46.70 0.00
(j)	 Type-token ratio 39.50 12.14
(k)	 Incidence of causal verbs and particles 36.80 0.00
(l)	 Content word overlap in adjacent sentences 33.60 0.00
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the present study (see Hempelmann, Dufty, McCarthy, 
Graesser, Cai, & McNamara, 2005; McCarthy, Dufty, 
Hempelmann, Cai, Graesser, & McNamara, 2012). 
We anticipated that this index would be able to 
discriminate low- and high-difficulty items because the 
semantic overlap between the necessary information 
(NI) and item stem or options can determine item 
difficulty (Buck & Tatsuoka, 1998). This LSA feature is, 
therefore, a useful index in listening assessment studies 
and test development, since it shows the effect of the 
repetition of NI in the listening text and stimuli on item 
difficulty. Relatedly, higher values of logical connectives 
incidence, which shows coherence in texts, can facilitate 
comprehension and decrease item test difficulty (see 
McNamara et al., 2010). 

Prepositional phrase density measures the syntactic 
density of texts; dense texts tend to be more difficult 
to parse and comprehend (Crossley et al., 2012; 
Biber, Gray, & Poonpon, 2011). Together with verb 
incidence, incidence of causal verbs and particles and 
word count—which measure surface features of texts—
prepositional phrase density can help item developers 
predict the difficulty of their test items. For example, 
it is expected that lengthier listening texts tax cognitive 
resources and working memory of listeners. Similarly, 
verb and prepositional density can probably increase 
the information density of the listening texts and likely 
render the test items more difficult. Another related 
index is type-token ratio, which as Crossley et al. (2012) 
argued, tends to alter the difficulty of test items.

Both MLP ANN and CART identified temporality 
as an influential variable in discriminating between 
low- and high-difficulty items. Previous research shows 
that texts with higher and more consistent tense and 
aspect (i.e., higher temporality) are relatively easier 
to comprehend. Relatedly, temporal cohesion would 
contribute to the comprehenders’ situation model 
and accordingly their comprehension of the events in 
the oral/written message (McNamara, Louwerse, Cai, 
& Graesser, 2013; McNamara, Graesser, McCarthy, 
& Cai, in press). The temporality values would help 
item developers to control the difficulty of test items. 
For example, repeating tense consistently can create 
cohesion in texts and facilitate the activation of schemata 
or information in the working memory (Duran, 
McCarthy, Graesser & McNamara, 2007). It can also 
help maintain the construct validity of the listening 
test items / tasks. Natural oral and written discourse 
includes consistent repetitions of tense and aspect. If 
any of these two elements shifts, the comprehender 

would need signal words that reflect the shift (e.g., the 
next day or tomorrow). If these words are deleted during 
text simplification (a process that occurs in preparing 
listening tests), test takers will encounter problems 
due to the unnaturalness of the listening text, thereby 
undermining the construct validity of the test (Buck, 
2001). 

Another way listening test items are a challenge 
is when their syntactic complexity is increased by, for 
example, increasing the verbal density before the main 
verb. Texts with a large number of words before the 
main verb are more difficult to parse (Crossley et al., 
2012; Graesser, Cai, Louwerse, & Daniel. 2006; Just 
& Carpenter (1992). In listening research, Aryadoust, 
Mehraban, and Alizadeh (2014) also verified the 
influence of words before the main verb. Nevertheless, 
caution should be exercised in adjusting the syntactic 
complexity of test items and NI. Overloading the NI’s 
syntax might render the listening text unnatural and 
jeopardize the cognitive validity of the test (Field, 2009, 
2012). Relatedly, content word overlap in adjacent 
sentences would facilitate text comprehension because it 
provides clues as to what concepts or ideas are important 
and should be attended to carefully to reach local and 
global comprehension. 

Having determined variables affecting item 
difficulty, it is desirable to explore the interrelations of 
the variables. For example, it is important to determine 
whether the effect of syntactic density or temporality is 
moderated through, for example, word count. That is, 
would lengthier texts with higher syntactic density be 
less difficult than texts with lower syntactic density? It is 
important that future researchers address such questions 
so as to move toward developing a theory of item 
difficulty. 

Conclusion and Implications 

This study has methodological and substantive 
implications for both CaMLA and the wider field. 
Methodologically, although previous research has 
examined the effect of item- and text-related variables on 
item difficulty, most studies apply traditional methods 
such as regression models which assume linearity of data. 
CART, and to a greater extent MLP ANN provided 
an alternative evaluation of the underlying patterns of 
the listening tests. We believe MLP ANN would hold 
promise in the investigation of language assessment and 
this study is one of the first of its kind to do so. 
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Using Coh-Metrix in listening in the present study 
is innovative. Unlike previous studies, the application of 
these measures to listening tests which essentially involve 
spoken texts is yet to be explored. The findings of the 
study will inform the usefulness of such methods for 
studying the complexity in spoken language. 

The present study has further contributed to the 
validity argument for the MET listening test and 
specifically supports the explanation inference of the 
MET. The explanation inference is invoked when there 
is evidence that the test data are related to the latent 
trait measured by the test and the variables influencing 
item difficulty are construct-relevant (Aryadoust, 2013). 
The present study has yielded evidence supporting the 
relevance of the influential lexical features of MET items 
to a general listening construct.

First, hypernymy knowledge is intimately related to 
learners’ vocabulary knowledge, and its significant role 
in determining item difficulty suggests that the items 
demanding a greater depth of vocabulary knowledge 
would be more challenging for test takers. Put differently, 
test takers who have a deeper lexical level knowledge are 
expected to process highly hypernymic relations more 
accurately than the low-ability test takers who typically 
have a shallow lexical level knowledge. Although this 
topic has hardly been researched in listening studies, 
vocabulary acquisition research provides supporting 
evidence for the determining role of hypernymy in the 
depth of vocabulary knowledge (Haastrup & Henriksen, 
2000). 

Another vocabulary-related index is Flesch-Kincaid 
grade level which distinguished low- and high-difficulty 
items. This finding also yields warrants for the validity 
argument of the MET, as difficult oral texts would tax 
cognitive resources of test takers and it will be more 
difficult to score highly on the items (Buck, 2001). 
Similarly, variations in the text features related to 
the listening construct such as prepositional phrase 
density, word count, and connectives would influence 
the difficulty level of listening messages. This finding 
resonates with previous listening research (e.g., Buck & 
Tatsuoka, 1998; Geranpayeh & Taylor, 2013) and offers 
support for the validity argument of the MET.

The significant role of average givenness of each 
sentence and content word overlap would indicate that 
overlaps between the item stems, options, and NI would 
determine item difficulty. This finding can be taken as 
evidence supporting the explanation inference of the 
MET, as it is consistent with previous research where the 
role of overlaps—as an important listening construct-

relevant factor—in determining cognitive demands of 
test items has been shown (Buck & Tatsuoka, 1998).

The main implication of these findings for the 
writing of listening test items for the MET is that 
manipulating textual features would affect item 
difficulty. For example, oral texts and the NI (necessary 
information) demanding a higher level of hypernymy 
knowledge and/or with higher Flesch-Kincaid grade 
levels can be used to increase the cognitive demand 
and difficulty level of the test; conversely, low-level 
hypernymy texts or NI, or texts with lower Flesch-
Kincaid grade levels can be more suitable for low-ability 
test takers. However, further experimental research 
is required to show that these variables would indeed 
help item writers develop high-quality listening items, 
as other text features can also influence test difficulty. 
Accordingly, we propose three potential topics for 
future research: (a) the investigation of the effect of 
prosodic features such as stress, rhythm and intonation, 
rate of speech delivery, and text topics on listening 
test difficulty; (b) test takers’ cognitive processes when 
answering the test items; and (c) the combined effect of 
a and b with the important lexical features identified in 
the present study. It is hoped that future listening test 
researchers will examine the effects of these variables in 
the MET and other listening tests.
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Appendix B1
Item Person Map of the Tests
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Appendix B1:	 Fuzzy Set Rules Generated in the Five-Variable ANFIS Model

 

Appendix C1 
Fuzzy Set Rules Generated in the Five-Variable ANFIS Model 

 
# Fuzzification rule for the input Output 
1 If (input1 is in1mf1) & (input3 is in2mf1) & (input6 is in3mf1) & (input10 is in4mf1) & (input12 is in5mf1)  then (output is out1mf1) (1) 
2 If (input1 is in1mf1) & (input3 is in2mf1) & (input6 is in3mf1) & (input10 is in4mf1) & (input12 is in5mf2)  then (output is out1mf2) (1) 
3 If (input1 is in1mf1) & (input3 is in2mf1) & (input6 is in3mf1) & (input10 is in4mf2) & (input12 is in5mf1)  then (output is out1mf3) (1) 
4 If (input1 is in1mf1) & (input3 is in2mf1) & (input6 is in3mf1) & (input10 is in4mf2) & (input12 is in5mf2)  then (output is out1mf4) (1) 
5 If (input1 is in1mf1) & (input3 is in2mf1) & (input6 is in3mf2) & (input10 is in4mf1) & (input12 is in5mf1)  then (output is out1mf5) (1) 
6 If (input1 is in1mf1) & (input3 is in2mf1) & (input6 is in3mf2) & (input10 is in4mf1) & (input12 is in5mf2)  then (output is out1mf6) (1) 
7 If (input1 is in1mf1) & (input3 is in2mf1) & (input6 is in3mf2) & (input10 is in4mf2) & (input12 is in5mf1)  then (output is out1mf7) (1) 
8 If (input1 is in1mf1) & (input3 is in2mf1) & (input6 is in3mf2) & (input10 is in4mf2) & (input12 is in5mf2)  then (output is out1mf8) (1) 
9 If (input1 is in1mf1) & (input3 is in2mf2) & (input6 is in3mf1) & (input10 is in4mf1) & (input12 is in5mf1)  then (output is out1mf9) (1) 
10 If (input1 is in1mf1) & (input3 is in2mf2) & (input6 is in3mf1) & (input10 is in4mf1) & (input12 is in5mf2)  then (output is out1mf10) (1) 
11 If (input1 is in1mf1) & (input3 is in2mf2) & (input6 is in3mf1) & (input10 is in4mf2) & (input12 is in5mf1)  then (output is out1mf11) (1) 
12 If (input1 is in1mf1) & (input3 is in2mf2) & (input6 is in3mf1) & (input10 is in4mf2) & (input12 is in5mf2)  then (output is out1mf12) (1) 
13 If (input1 is in1mf1) & (input3 is in2mf2) & (input6 is in3mf2) & (input10 is in4mf1) & (input12 is in5mf1)  then (output is out1mf13) (1) 
14 If (input1 is in1mf1) & (input3 is in2mf2) & (input6 is in3mf2) & (input10 is in4mf1) & (input12 is in5mf2)  then (output is out1mf14) (1) 
15 If (input1 is in1mf1) & (input3 is in2mf2) & (input6 is in3mf2) & (input10 is in4mf2) & (input12 is in5mf1)  then (output is out1mf15) (1) 
16 If (input1 is in1mf1) & (input3 is in2mf2) & (input6 is in3mf2) & (input10 is in4mf2) & (input12 is in5mf2)  then (output is out1mf16) (1) 
17 If (input1 is in1mf2) & (input3 is in2mf1) & (input6 is in3mf1) & (input10 is in4mf1) & (input12 is in5mf1)  then (output is out1mf17) (1) 
18 If (input1 is in1mf2) & (input3 is in2mf1) & (input6 is in3mf1) & (input10 is in4mf1) & (input12 is in5mf2)  then (output is out1mf18) (1) 
19 If (input1 is in1mf2) & (input3 is in2mf1) & (input6 is in3mf1) & (input10 is in4mf2) & (input12 is in5mf1)  then (output is out1mf19) (1) 
20 If (input1 is in1mf2) & (input3 is in2mf1) & (input6 is in3mf1) & (input10 is in4mf2) & (input12 is in5mf2)  then (output is out1mf20) (1) 
21 If (input1 is in1mf2) & (input3 is in2mf1) & (input6 is in3mf2) & (input10 is in4mf1) & (input12 is in5mf1)  then (output is out1mf21) (1) 
22 If (input1 is in1mf2) & (input3 is in2mf1) & (input6 is in3mf2) & (input10 is in4mf1) & (input12 is in5mf2)  then (output is out1mf22) (1) 
23 If (input1 is in1mf2) & (input3 is in2mf1) & (input6 is in3mf2) & (input10 is in4mf2) & (input12 is in5mf1)  then (output is out1mf23) (1) 
24 If (input1 is in1mf2) & (input3 is in2mf1) & (input6 is in3mf2) & (input10 is in4mf2) & (input12 is in5mf2)  then (output is out1mf24) (1) 
25 If (input1 is in1mf2) & (input3 is in2mf2) & (input6 is in3mf1) & (input10 is in4mf1) & (input12 is in5mf1)  then (output is out1mf25) (1) 
26 If (input1 is in1mf2) & (input3 is in2mf2) & (input6 is in3mf1) & (input10 is in4mf1) & (input12 is in5mf2)  then (output is out1mf26) (1) 
27 If (input1 is in1mf2) & (input3 is in2mf2) & (input6 is in3mf1) & (input10 is in4mf1) & (input12 is in5mf2)  then (output is out1mf27) (1) 
28 If (input1 is in1mf2) & (input3 is in2mf2) & (input6 is in3mf1) & (input10 is in4mf2) & (input12 is in5mf1)  then (output is out1mf28) (1) 
29 If (input1 is in1mf2) & (input3 is in2mf2) & (input6 is in3mf1) & (input10 is in4mf2) & (input12 is in5mf2)  then (output is out1mf29) (1) 
30 If (input1 is in1mf2) & (input3 is in2mf2) & (input6 is in3mf2) & (input10 is in4mf1) & (input12 is in5mf1)  then (output is out1mf30) (1) 
31 If (input1 is in1mf2) & (input3 is in2mf2) & (input6 is in3mf2) & (input10 is in4mf1) & (input12 is in5mf2)  then (output is out1mf31) (1) 
32 If (input1 is in1mf2) & (input3 is in2mf2) & (input6 is in3mf2) & (input10 is in4mf2) & (input12 is in5mf1)  then (output is out1mf32) (1) 

Note. Input: 1 = Word count; 3 = Content word overlap (adjacent sentences); 6 = Logical connectives incidence; 10 = Verb incidence; 12 = Flesch-Kincaid grade 
level. 
The rules will be activated when the right condition is met. For example, Rule #1 is stated as “If (input1 is in1mf1) & (input3 is 
in2mf1) & (input6 is in3mf1) & (input10 is in4mf1) & (input12 is in5mf1) then (output is out1mf1) (1). This indicates that if the 
magnitude of any input datum is low (mf1 stands for the low membership function), the predicted amount of output will be equal to 
membership function one. These rules are applied in the hidden layer of the ANFIS which is presented in in Figure 5. 
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5 If (input1 is in1mf1) & (input3 is in2mf1) & (input6 is in3mf2) & (input10 is in4mf1) & (input12 is in5mf1)  then (output is out1mf5) (1) 
6 If (input1 is in1mf1) & (input3 is in2mf1) & (input6 is in3mf2) & (input10 is in4mf1) & (input12 is in5mf2)  then (output is out1mf6) (1) 
7 If (input1 is in1mf1) & (input3 is in2mf1) & (input6 is in3mf2) & (input10 is in4mf2) & (input12 is in5mf1)  then (output is out1mf7) (1) 
8 If (input1 is in1mf1) & (input3 is in2mf1) & (input6 is in3mf2) & (input10 is in4mf2) & (input12 is in5mf2)  then (output is out1mf8) (1) 
9 If (input1 is in1mf1) & (input3 is in2mf2) & (input6 is in3mf1) & (input10 is in4mf1) & (input12 is in5mf1)  then (output is out1mf9) (1) 
10 If (input1 is in1mf1) & (input3 is in2mf2) & (input6 is in3mf1) & (input10 is in4mf1) & (input12 is in5mf2)  then (output is out1mf10) (1) 
11 If (input1 is in1mf1) & (input3 is in2mf2) & (input6 is in3mf1) & (input10 is in4mf2) & (input12 is in5mf1)  then (output is out1mf11) (1) 
12 If (input1 is in1mf1) & (input3 is in2mf2) & (input6 is in3mf1) & (input10 is in4mf2) & (input12 is in5mf2)  then (output is out1mf12) (1) 
13 If (input1 is in1mf1) & (input3 is in2mf2) & (input6 is in3mf2) & (input10 is in4mf1) & (input12 is in5mf1)  then (output is out1mf13) (1) 
14 If (input1 is in1mf1) & (input3 is in2mf2) & (input6 is in3mf2) & (input10 is in4mf1) & (input12 is in5mf2)  then (output is out1mf14) (1) 
15 If (input1 is in1mf1) & (input3 is in2mf2) & (input6 is in3mf2) & (input10 is in4mf2) & (input12 is in5mf1)  then (output is out1mf15) (1) 
16 If (input1 is in1mf1) & (input3 is in2mf2) & (input6 is in3mf2) & (input10 is in4mf2) & (input12 is in5mf2)  then (output is out1mf16) (1) 
17 If (input1 is in1mf2) & (input3 is in2mf1) & (input6 is in3mf1) & (input10 is in4mf1) & (input12 is in5mf1)  then (output is out1mf17) (1) 
18 If (input1 is in1mf2) & (input3 is in2mf1) & (input6 is in3mf1) & (input10 is in4mf1) & (input12 is in5mf2)  then (output is out1mf18) (1) 
19 If (input1 is in1mf2) & (input3 is in2mf1) & (input6 is in3mf1) & (input10 is in4mf2) & (input12 is in5mf1)  then (output is out1mf19) (1) 
20 If (input1 is in1mf2) & (input3 is in2mf1) & (input6 is in3mf1) & (input10 is in4mf2) & (input12 is in5mf2)  then (output is out1mf20) (1) 
21 If (input1 is in1mf2) & (input3 is in2mf1) & (input6 is in3mf2) & (input10 is in4mf1) & (input12 is in5mf1)  then (output is out1mf21) (1) 
22 If (input1 is in1mf2) & (input3 is in2mf1) & (input6 is in3mf2) & (input10 is in4mf1) & (input12 is in5mf2)  then (output is out1mf22) (1) 
23 If (input1 is in1mf2) & (input3 is in2mf1) & (input6 is in3mf2) & (input10 is in4mf2) & (input12 is in5mf1)  then (output is out1mf23) (1) 
24 If (input1 is in1mf2) & (input3 is in2mf1) & (input6 is in3mf2) & (input10 is in4mf2) & (input12 is in5mf2)  then (output is out1mf24) (1) 
25 If (input1 is in1mf2) & (input3 is in2mf2) & (input6 is in3mf1) & (input10 is in4mf1) & (input12 is in5mf1)  then (output is out1mf25) (1) 
26 If (input1 is in1mf2) & (input3 is in2mf2) & (input6 is in3mf1) & (input10 is in4mf1) & (input12 is in5mf2)  then (output is out1mf26) (1) 
27 If (input1 is in1mf2) & (input3 is in2mf2) & (input6 is in3mf1) & (input10 is in4mf1) & (input12 is in5mf2)  then (output is out1mf27) (1) 
28 If (input1 is in1mf2) & (input3 is in2mf2) & (input6 is in3mf1) & (input10 is in4mf2) & (input12 is in5mf1)  then (output is out1mf28) (1) 
29 If (input1 is in1mf2) & (input3 is in2mf2) & (input6 is in3mf1) & (input10 is in4mf2) & (input12 is in5mf2)  then (output is out1mf29) (1) 
30 If (input1 is in1mf2) & (input3 is in2mf2) & (input6 is in3mf2) & (input10 is in4mf1) & (input12 is in5mf1)  then (output is out1mf30) (1) 
31 If (input1 is in1mf2) & (input3 is in2mf2) & (input6 is in3mf2) & (input10 is in4mf1) & (input12 is in5mf2)  then (output is out1mf31) (1) 
32 If (input1 is in1mf2) & (input3 is in2mf2) & (input6 is in3mf2) & (input10 is in4mf2) & (input12 is in5mf1)  then (output is out1mf32) (1) 

Note. Input: 1 = Word count; 3 = Content word overlap (adjacent sentences); 6 = Logical connectives incidence; 10 = Verb incidence; 12 = Flesch-Kincaid grade 
level. 
The rules will be activated when the right condition is met. For example, Rule #1 is stated as “If (input1 is in1mf1) & (input3 is 
in2mf1) & (input6 is in3mf1) & (input10 is in4mf1) & (input12 is in5mf1) then (output is out1mf1) (1). This indicates that if the 
magnitude of any input datum is low (mf1 stands for the low membership function), the predicted amount of output will be equal to 
membership function one. These rules are applied in the hidden layer of the ANFIS which is presented in in Figure 4. 


