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ABSTRACT This study examined underlying factors of the listening 
construct of the Michigan English Language Assessment Battery 
(MELAB).  Confirmatory factor analysis tested the hypothesis that the 
listening construct had two underlying factors: language knowledge and 
comprehension. The analysis of the input facet of MELAB resulted in 14 
listening ability variables. A total of 2,133 test takers’ listening scores 
were used. The initial model showed several high standard residuals and 
significant model chi-square values suggesting model respecification. In 
the respecified model, the measurement errors were allowed to covary 
while the factor associations remained unchanged. The respecified model 
showed good fit of both parameters and overall model. Thus the second 
model of listening construct was accepted as evidence to support the 
hypothesis. The two-factor model supported the complex nature of 
listening. The two factors were part of various knowledge sources in L2 
listening, and other sources could account for the measurement error 
covariances.   

 
 

Listening constructs refer to the ability measured by a given listening test and are 
different from genetic listening abilities due to the test method effect. It is important to 
understand what is tested in order to argue for the validity of meaningful inference about 
listening abilities of test takers. 

This study investigates the underlying factors of the listening construct of the 
Michigan English Language Assessment Battery (MELAB). The underlying factors represent 
the dimensions of listening abilities and are grounded on theoretical aspects of listening 
abilities. In order to conceptualize the factors, this study considers language theories, 
comprehension processing, and test method formats. Language theories provide a theoretical 
basis for defining the components of the listening construct. Comprehension processing 
explains a cognitive complexity of the listening construct. Test formats are structural 
characteristics of a given test that place restrictions in defining the construct.  
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Background Review 
 
Second language listening is a complex process involving such sources as linguistic 

knowledge, contextual knowledge, general world knowledge, and co-text knowledge (Buck, 
2001). Among these sources, linguistic knowledge is most in need for second language 
learners. Bachman’s model of communicative language ability defines language knowledge 
with respect to organizational and functional knowledge (Bachman, 1990; Bachman & Palmer, 
1996). Organizational knowledge governs the linguistic knowledge such as syntactic, 
phonological, lexical, and textual knowledge. Functional knowledge refers to social aspects of 
language use, such as illocutionary and sociocultural knowledge.  

When listening abilities are related to Bachman’s model, they have both linguistic and 
functional aspects. Phonological knowledge plays a core role in linguistic knowledge of 
listening because listeners have to comprehend the aural input. The functional aspect of 
listening is also important because listeners have to understand the intent of speakers.  

Numerous researchers proposed listening taxonomies (Brown & Yule, 1983; 
O’Malley, Chamot, & Kupper, 1989; Dunkel, Henning, & Chaudron, 1993; Mendelsohn, 
1994; Richards, 1983; Rost, 1994). These taxonomies describe various listening activities in 
different contexts. While agreeing that listening comprehension is a complex, 
multidimensional process, they lack an agreement on the components of listening.  

For general listening skills, Richards (1983) proposed micro- and macroskills of 
listening based on an analysis of a variety of sources. It was suggested that the microskills 
were required for conversational listening while the macroskills were relevant to academic 
listening. Rost (1994) provided an extensive list of listening skills for the curriculum design of 
listening classes. However, theoretical taxonomies lacked empirical evidence (Buck, 1995).  

In testing, Powers (1985) found that listening skills were considered important to 
academic success across disciplines. Powers conducted surveys of the faculty members, 
students, and admissions officers at universities and found various listening activities 
important to academic success. These listening activities were related to identification of 
various ideas, information retention, inference, and vocabulary.  

Empirical studies in listening suggested various factors affecting listening in testing 
contexts. Some research studies investigated the textual and item characteristics that were 
relevant to item difficulty (Freedle & Kostin, 1998; Nissan, DeVincenzi & Tang, 1995; 
Kostin, 2004). Nissan et al. (1995) studied the stimulus-related and item-related features of 
TOEFL dialogue items that contributed to item difficulty. The study found five variables that 
have a significant impact on item difficulty: word frequency, utterance pattern, negative in 
stimulus, explicit/implicit information, and role of speakers. It also found that combinations of 
variables had stronger impact on the item difficulty index than any individual variable.  

Kostin (2004) replicated the study of Nissan et al. with additional variables. The aim 
of the study was to provide practical information for the test developers to create easier or 
more difficult items in TOEFL dialogue tests. The author grouped the contributing factors 
into macrolevels of classifications: word, sentence, discourse and task-processing level factors. 
The multiple-regression analysis found some variables significant predictors of item difficulty. 
Those variables were related to vocabulary, idioms, negations, syntactic structures, and text 
contents. 

Similarly, Freedle and Kostin (1996) conducted a study to predict listening item 
difficulty for TOEFL minitalk items. Based on the fact that the scores of TOEFL listening 
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were highly correlated with its reading scores, the variables used in the reading study were 
reused in this study. They included negations, referentials, rhetorical organizers, fronted 
structures, serial position effects, lexical overlaps, and vocabulary. A set of new variables was 
introduced in the listening study: emphatic text words, pauses, the redundancy of information, 
lexical overlap, and topical differences. Using a multiple-regression analysis, the study found 
significant predictors in characteristics of texts, types of inference, and text/item overlaps. 

Other studies supported that item difficulty is affected by item types. Jensen, Hansen, 
Green, and Akey (1996) showed that item difficulty was manageable in item writing. They 
investigated the effect of characteristics of texts and items on the item difficulty of a listening 
test for academic purposes. The study found none of the text-related predictors significant. 
The authors attributed this nonsignificant finding to the “leveling effect” in item writing. That 
is, considerations in item writing such as pacing questions appropriately and asking verbatim 
responses may have leveled out the effect of textual features on item difficulty. Item 
characteristics may override the difficulty created by textual features, and item characteristics 
may be the primary source of item difficulty. The authors concluded that the texts did not 
have a strong influence on the scores as long as the texts were not too technical. In addition, 
by controlling item types, test writers can use a variety of texts. 

Thomson (1993) examined two types of item tasks used in a Russian language test: 
recall of structurally important information, which was relevant to the main context, and recall 
of incidental information, which was not relevant to the main context. The recall of incidental 
information appeared more difficult, but the result was not statistically significant. On the 
other hand, Shohamy and Inbar (1991) found that less-skilled learners performed better 
mostly on questions that required identifying details and facts while high-level learners 
performed well on the questions that required synthesizing information, drawing conclusions, 
and making inferences.  

Some studies had a global view on listening abilities measured by listening tests. Buck 
and Tatsuoka (1998) and Buck, Tatsuoka, Kostin, and Pelphs (1997), for example, 
incorporated theoretical taxonomies and empirical data to define listening attributes. Using 
rule spacing methodology, they investigated the listening attributes measured by the test. The 
listening attributes believed to underlie the performance on a test were identified in terms of 
task identification, context, information processing, and response construction, and each item 
was coded according to which attributes it measured. While the prime attributes indicated 
independent knowledge states, the interaction attribute indicated co-occurrence of attribute. 
The prime listening attributes they found significant were related to types of information, 
information loads, and uses of contextual information, stress patterns, speech rates, inference, 
and background knowledge, among others (Buck & Tatsuoka, 1998). 

 
Aim of the Study 

 
This study proposes and tests the hypothesis: the listening abilities measured by the 

MELAB consist of two factors associated with language knowledge and comprehension.  
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Methods 
 

Data 
The English Language Institute at the University of Michigan has provided the data 

for the present research. The data set has 2,133 test takers’ scores of the MELAB listening 
section. The listening section has 50 items in three parts. The first part has 15 questions, each 
of which is given after a short utterance of one speaker. The second part has 20 questions, 
each of which is given after a short dialogue of two speakers. Finally, the third part has 15 
questions. Four to five questions are asked after a lengthy monologue passage on academic 
topics. The data have 0 and 1 values for all the items of each test taker. Test-takers’ 
backgrounds are not provided.  
 
Variables 

This study uses 14 listening abilities as variables (see Table 1). This set of 14 abilities 
is derived from the analysis of the test input. The input facet of the test is characterized by its 
format and its language (Bachman, 1990; Bachman & Palmer, 1996). The input format 
includes channel, form, language, length, type, degree of speededness, and vehicle.  

The input text length and types of linguistic knowledge are major criteria in 
identifying the MELAB listening abilities. The listening section of the MELAB shares the 
same features of the format except for the text length and text types (monologue and dialogue). 
Parts 1 and 2 have short input texts that have one or a few sentences, whereas Part 3 has long 
input texts that consist of a few discourse paragraphs. Thus, the input text length is a variation 
that can affect test takers’ performance.  

Linguistic knowledge is another criterion. Language knowledge of input is described 
in terms of organizational characteristics, including grammatical and textual aspects, and 
pragmatic characteristics including functional and sociolinguistic aspects (Bachman, 1990). 
The listening abilities of the MELAB include both organization and pragmatic knowledge. 
The descriptions of listening abilities and the corresponding items are reported in Table 1.  
 
Data Analysis: Confirmatory Factor Analysis 

In order to test the stated hypothesis, this study uses confirmatory factor analysis 
(CFA). Confirmatory factor analysis allows researchers to construct models in advance 
(Bollen, 1989). Researchers can determine the number of latent variables and have prior 
hypotheses about the effect of the latent variables on the observed variables in terms of 
directionality and magnitudes.  

This study follows a model-generating situation that allows model respecifications 
(Joreskog & Sorbom, 1993). The researcher has a tentative initial model and if the initial 
model does not fit the data well, it is modified and tested again on the same data set. The 
respecification of each model is theoretically or statistically determined.  

Confirmatory factor analysis consists of five stages: model specification, model 
identification, model estimation, model evaluation, and model respecification (Bollen, 1989; 
Kline, 2005; Kunnan, 1998). When the first model does not have good fit, then the cycle of 
five stages starts again with a respecified model until a theoretically and statistically good fit 
model is found.  
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Table 1.  Variables  

Var. Descriptions of Listening Abilities 
No. 
items Item Number Mean SD 

x1 Decoding various verb tenses 4 1, 7, 9, 32 .640 .280 

x2 Decoding prepositional verbs  4 3, 5, 8, 28 .702 .259 

x3 Decoding key vocabulary  4 4, 11, 23, 33 .727 .275 

x4 Decoding grammatical lexicon 4 6, 12, 14, 15 .746 .270 

x5 Decoding idiomatic expression 3 2, 24, 26, .669 .303 

x6 Comprehending illocutionary inference 
stated by a speaker 

4 13, 22, 30, 35 .830 .301 

x7 Comprehending conversational inference  3 16, 34, 31 .716 .266 

x8 Processing key information stated by a 
speaker  

3 10, 17, 20 .624 .321 

x9 Processing key information in conversation  2 18, 19 .771 .263 

x10 Decoding auxiliary negatives  4 21, 25, 27, 29 .697 .270 

x11 Comprehending text-based inference  5 38, 39, 42, 45, 46 .697 .355 

x12 Comprehending stated specific details  4 36, 43, 47, 48 .612 .263 

x13 Comprehending stated details with 
explanation or repeated   

4 40, 44, 49, 50 .656 .270 

x14 Comprehending and recalling the stated 
details in the beginning of discourses 

2 37, 41 .649 .287 

 
 

Results 
 

All 2,133 test takers’ MELAB listening scores are analyzed. The descriptive statistics 
show that the mean score of the listening test is 34.37 out of 50 with a standard deviation of 
9.12. The highest score is 50 while the lowest is 8. The reliability coefficient (Cronbach’s 
Alpha) is 0.90. The CFA analysis uses a covariance matrix of the observed variables, and it is 
reported in Table 2.  
 
Defining Factors: Language Knowledge and Comprehension 

This study conceptualizes two underlying factors of listening: language knowledge 
and comprehension. In language testing, language knowledge is a major component of the 
construct to be measured, and knowledge that varies from context to context may contribute 
to measurement errors (Buck, 2001). Language knowledge includes grammatical, 
phonological, and lexical knowledge, along with pragmatic knowledge. Comprehension is a 
cognitive process critical to all the modalities of language use. Second language listening 
comprehension has three stages (Rost, 2005). The decoding phase recognizes lexical items  
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Table 2.  Covariance Matrix  
 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 

x1 1.231              

x2 0.582 1.143             

x3 0.637 0.577 1.400            

x4 0.844 0.781 0.944 1.978           

x5 0.547 0.492 0.633 0.744 1.117          

x6 0.633 0.524 0.635 0.814 0.539 1.141         

x7 0.611 0.542 0.623 0.815 0.506 0.587 1.054        

x8 0.484 0.425 0.570 0.683 0.442 0.437 0.470 1.098       

x9 0.697 0.611 0.653 0.912 0.615 0.682 0.677 0.561 1.313      

x10 0.624 0.573 0.643 0.876 0.565 0.602 0.613 0.501 0.691 1.501     

x11 0.588 0.484 0.616 0.777 0.528 0.612 0.598 0.428 0.693 0.592 1.410    

x12 0.399 0.383 0.385 0.492 0.344 0.396 0.409 0.255 0.421 0.375 0.537 1.027   

x13 0.587 0.507 0.634 0.765 0.483 0.640 0.573 0.347 0.658 0.599 0.762 0.599 1.735  

x14 0.368 0.344 0.376 0.449 0.342 0.396 0.375 0.223 0.453 0.413 0.503 0.327 0.515 0.885 

 
 
and parses propositions. The comprehension phase connects input to relevant knowledge 
sources. The final phase involves interpretation of the listener in respect to response options. 

Language knowledge and comprehension factors of the MELAB listening test are 
associated with the input component of test method facets. The main classification of test 
methods are setting, rubric, input, expected response, and relationship between input and 
response (Bachman 1990; Bachman & Palmer 1996). The input format is described in terms 
of its channel (aural, visual), form (language, nonlanguage, both), language (native, target, 
both), length, type (item, prompt), degree of speededness, and vehicle (live, reproduced, both). 
Among these, the input length varies across the parts of the test while other factors are 
consistent for the entire listening test.  

The difference in the input texts seemed to tap into different aspects of listening 
abilities. The questions with short texts have listeners use linguistic aspects of listening, 
whereas the questions with long texts have them use comprehension aspects of listening. The 
hypothesized latent factors of listening could be interpreted in terms of input text length. 
However, the text length does not provide us with meaningful understanding of the construct. 
The latent factors are conceptualized with respect to language theories.  
 
Notations 

The factor analysis model uses various symbols and notations presented in Table 3. 
The listening ability types are observed variables represented by x. The language knowledge 
factor and comprehension factor are latent variables represented by KSI ( ). The lambda ( , 

x) refers to factor loading coefficients that are the regression coefficients of latent variables 
( ) on the observed variables (x). The DELTA ( ) refers to the measurement errors 
representing the unique factor of variables x uncorrelated with latent variables and with the 
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other variables’ DELTA. Variances of latent variables are represented by PHI ( ) and free to 
vary or covary.  
 
 
Table 3.  Symbols and Notations used in Model Specifications 
 Symbol Name  Definition  

Variables x Ex Observed variables of latent variables ( ) 

 ,  Ksi Latent variables 

Coefficients  , x Lambda Coefficients relating observed endogenous variables 
(x) to latent variables ( ) 

 ,  Delta  Measurement errors for observed endogenous 
variables (x) 

Covariance ,  Phi Covariance of latent variables ( ) 

 ,  Theta-Delta  Covariance of measurement errors 

 
 
Initial Model  

The hypothesis postulates that listening constructs measured by the MELAB listening 
test consist of two latent factors. LAG represents the first factor ( 1) associated with language 
knowledge, while COM indicates the second factor ( 2) associated with comprehension. The 
observed variables x are the fourteen listening ability types that this research proposes.  
 
Model Specification 

The model specifications identify a total of 31 parameters to be estimated in three 
matrices: factor loading ( x), covariance of latent variables ( ), and covariance of 
measurement errors ( ). The parameters to be estimated are called free parameters. 

The initial model has the variables from x1 to x10 factored onto LAG ( 1), and those 
from x11 to x14 onto COM ( 2). All variables (x) contain measurement errors ( ), which are 
uncorrelated with each other and with the latent variables. The linear equation of the 
measurement model, x = x  + , shows the relationship between the observed variables and 
the latent variables.  

The measurement errors of the observed variables ( ) in this initial model 
specification are uncorrelated with each other (COV ( i, j) = 0, for all i and j) and 
uncorrelated with the latent variables ( ) (COV ( i, j) = 0, for all i and j). Those errors are 
random and have the expected value equal to zero (E( j) = 0, for all j).  (PHI) represents the 
covariance of latent variables ( ). The matrix below shows the three covariance coefficients 
of latent variables to be estimated.  
 

 = 
11  

12 22 
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Model Identifications 
Model identifications examine whether a unique solution exists for the parameter 

coefficients specified in the previous section. Unidentified models allow an infinite number of 
values for the parameters, which would produce the same covariance matrix. The estimations 
of not-identified models would result in indeterminacy, arbitrary estimates of the parameters, 
and meaningless interpretations. Kline (2005: 169–170) states two necessary conditions that 
any confirmatory factor analysis model has to meet in order to be identified: first, the number 
of free parameters is less than or equal to the number of observations (i.e., dfM  0), and 
second, every latent variable including the measurement errors and the factors have to have a 
scale.  

The model specified in this study satisfies the first condition. The number of 
observations equals v(v+1), where v is the number of observed variables. This study has 
14*15 = 210 observations, and the initial model has 31 free parameters to be identified. As the 
number of free parameters is less than the number of observation, it meets the first necessary 
condition and the model can be identified.  

Similar to the first condition, Bollen (1989) suggests the t-rule as a necessary 
condition for model identification. That is, the number of free parameters (t) must be less than 
or equal to the number of unique elements in the covariance matrix of observed variables x, t 

 ½(q)(q+1). The t refers to the number of free parameters in the residual covariance matrix, 
. With the number of observed variables equal to q, there are ½(q)(q+1) known-to-be-

identified elements. In this study, t is 14, less than 105 (½*14*15). Thus, the t-rule is 
satisfied, and the model is identifiable.  
The second necessary condition in Kline (2005) regards scaling the latent variable. For 
scaling latent variables, this study uses a unit variance identification (UVI) constraint (Kline, 
2005). The unit variance identification constraint fixes the factor variance to 1.0 and 
standardizes the factor.  
 

  = 
1.0  

12 1.0 
 
In this case, all the factor loadings ( ) are free parameters. This method of scaling is simple 
but only applicable to exogenous factors. The model of this study has only exogenous factors, 
so the UVI constraint method is applicable. 

Fixing the phi 11 and 22 to 1.00 decreases the total number of parameters by two. 
Therefore, scaling the latent variables by UVI method results in a decrease of the total number 
of parameter estimates from 31 to 29. 

In sum, the model identification tests confirm that the specified model is identifiable. 
All the parameter estimations are reported in the following section.  
 
Model Estimations 

The parameters are estimated with LISREL software (see Table 4). The number of 
input variables is 14, which is equal to the number of the observed variables (X-variables). 
The number of latent variables represented by KSI ( ) is two, and the number of observations 
is 2,133. 
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Table 4.  Maximum Likelihood Parameter Estimates of the Initial Model 

Factor loadings (LAMBDA-X)  Measurement Errors  

 LAG ( 1) COM ( 2) t-value   (THETA-DELTA) 

x1 0.79 - 37.09  VAR( 1) 0.60 

x2 0.71 - 33.29  VAR( 2) 0.64 

x3 0.83 - 35.89  VAR( 3) 0.72 

x4 1.07 - 40.38  VAR( 4) 0.83 

x5 0.70 - 33.45  VAR( 5) 0.63 

x6 0.77 - 37.63  VAR( 6) 0.54 

x7 0.77 - 39.22  VAR( 7) 0.47 

x8 0.61 - 28.60  VAR( 8) 0.72 

x9 0.87 - 40.26  VAR( 9) 0.56 

x10 0.80 - 32.73  VAR( 10) 0.86 

x11 - 0.89 36.81  VAR( 11) 0.63 

x12 - 0.61 27.99  VAR( 12) 0.66 

x13 - 0.89 32.66  VAR( 13) 0.93 

x14 - 0.57 28.12  VAR( 14) 0.56 

Factor variances and covariance (PHI) 

11 1.00 

21 0.83 

22 1.00 
 
 

The identified model is evaluated for the specific parameters as well as for the overall 
model fit.  
 
Model Evaluation 

In model evaluation, following Joreskog and Sorbom’s (1993) suggestions, first the 
parameter estimates are examined for unreasonable values or anomalies. The R-square is 
evaluated as an indicator of the strength of the linear relationship between latent and observed 
variables. Finally, overall fit of the model is evaluated with various goodness-of-fit indices.  
 
Parameter Evaluation 

The parameter evaluation includes t-tests on the meaningful associations between the 
latent factors and the observed variables and the examination of standardized residuals.  
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Significant Tests 

The null hypothesis of t-tests is that the factor loading is equal to zero in the 
population. A nonsignificant factor loading indicates that the involved variable is poor in 
measuring the underlying factor and is possibly reassigned or dropped (Hatcher, 1994). The t-
test values show that the associations between the observed variables and the latent variables 
in the initial model are reasonable. The t-values for the factor loadings in Table 4 show that 
all the factor loadings are significant at p < 0.001. 
 
 
Table 5.  Standardized Residuals  

 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 

x1 -              

x2 1.71 -             

x3 -1.61 -0.53 -            

x4 -0.50 1.79 4.00 -           

x5 -0.81 -0.21 4.05 -0.43 -          

x6 1.70 -1.90 -0.38 -1.08 -0.23 -         

x7 0.26 0.14 -0.92 -0.38 -2.89 -0.51 -        

x8 -0.26 -0.58 4.35 1.75 0.91 -2.98 0.05 -       

x9 0.49 -0.31 -5.60 -1.57 0.47 0.88 1.14 2.20 -      

x10 -0.75 0.61 -1.13 1.30 0.38 -1.15 0.14 0.71 -0.30 -     

x11 0.10 -2.40 0.34 -0.75 0.72 2.93 2.53 -1.49 3.57 0.15 -    

x12 -0.26 1.64 -2.12 -2.87 -0.74 0.29 1.59 -3.47 -1.40 -1.68 -0.12 -   

x13 -0.32 -1.07 0.87 -1.59 -2.17 3.73 0.13 -5.64 0.51 0.16 -2.74 4.02 -  

x14 -0.54 0.73 -0.98 -3.47 0.79 2.34 1.09 -4.47 3.14 2.18 0.15 -1.55 0.63 - 

 
 
Standardized Residuals 

The residual matrix is a measure of differences between the sample covariance matrix 
and the implied covariance matrix. Standard residuals are residuals divided by their standard 
errors. Ideally, all residuals are to be near zero for a “good” model. Large standard residuals 
help locate the reasons for poor fit of the model (Joreskog & Sorbom, 2001).  

The standardized residuals of the initial model show many values not close to zero 
(see Table 5). When a covariance matrix is used, the elements in the residual matrix are not 
standardized in a meaningful way. In general, the element values exceeding 2.00 should be 
considered large. Several residuals marked in bold have substantially high values, above 2.00. 
These are problematic and the second model is respecified to reduce these values.  
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Squared Multiple Correlations (SMC) 
The squared multiple correlations indicate the proportion of variance in the observed 

variables accounted for by the latent factor variables. The initial model shows medium sizes 
of SMC that range from 0.34 for x8 to 0.58 for x4 (see Table 6). The first latent factor, F1, 
accounts for 34% of the total variance of variable x8 and 58% of the total variance of x4.  
 
 
Table 6.  Squared Multiple Correlations for X - Variables          

SMC of the Initial Model  

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 

0.51 0.44 0.49 0.58 0.44 0.52 0.56 0.34 0.58 0.42 0.56 0.36 0.46 0.36 

 
 

Overall Model Fit 
 

All measures of overall model fit are based on the covariance of the sample (S) and 
the covariance of the population ( ). The fundamental assumption of model fit is that the 
population covariance matrix of observed variables is equal to the covariance matrix written 
as a function of the parameters of the model, called implied covariance matrix ( ( )) (Bollen, 
1989). The fit indices estimate the closeness of the sample covariance matrix to the population 
covariance matrix as function of model parameters.  

There are numerous fit indices, making it difficult to select which particular ones to 
use and which value to report. Kline (2005) suggests four fit indices as a minimum: (1) the 
model chi-square, (2) the root mean square error of approximation (RMSEA), (3) the 
comparative fit index (CFI), and (4) the standardized root mean square residual (SRMR) (see 
Table 7). 

 
Chi-Square ( 2 M) Test  

Chi-square is a badness-of-fit measure. A 2
M –test assumes the null hypothesis (H0) 

that the researcher’s model is a perfect fit to the population. Thus, researchers do not desire to 
reject the null hypothesis. The current study yields p = 0.000 for the minimum fit function 2 

and the null is rejected. As a result, the initial model is found to be not a good fit to the 
population.  

Though the 2
M –test concludes that the initial model is not a good fit, it is important 

to consider other indices of model evaluation because of the limitation in 2 model tests. All 
of the indices based on 2 assume multivariate normality of the endogenous variables. In the 
case of nonnormality, true models will be rejected too often. Also the model 2

 M is sensitive 
to sample size. If the sample size is large, the value of 2

 M tends to reject the model (Kline, 
2005).  
 
 



88 M. Eom 89

Table 7.  Goodness of Fit Statistics for the Initial Model 
Indices Value  Evaluation  

Degrees of Freedom 76  

Minimum Fit Function Chi-Square 269.41  

P-value of chi-square ( 2
M) P = 0.000 Not good fit 

Root Mean Square Error of Approximation (RMSEA) 0.035 Good fit 

90 Percent Confidence Interval for RMSEA (0.030 ; 0.039) Good fit 

Comparative Fit Index (CFI) 0.99 Good fit 

Incremental Fit Index (IFI) 0.99 Good fit 

Relative Fit Index (RFI) 0.99 Good fit 

Root Mean Square Residual (RMR) 0.027 Good fit 

Standardized RMR 0.021 Good fit 

 
 
Root Mean Square Error of Approximation 

The Root Mean Square Error of Approximation (RMSEA) measures the error of 
approximation, which is concerned with the lack of fit of the model to the population 
covariance matrix (Kline 2005). Unlike 2 tests, the RMSEA does not assume a null 
hypothesis of a perfect fit of the researcher’s model in the population, but the degree of 
falseness. The RMSEA is a “badness-of-fit” index, in which the higher the value is, the worse 
the fit is. RMSEA = 0.00 indicates the best fit. In general, a RMESA value smaller than 0.05 
represents close approximate fit, while a value between 0.05 and 0.08 indicates a reasonable 
error of approximation. The RMSEA over 0.10 suggests poor fit.  

The RMSEA of the initial model is 0.035 indicating a reasonably good fit of the model 
in the population.  
 
Confidence interval for RMSEA 

The 90% confidence interval for RMSEA reflects the degree of uncertainty associated 
with the RMSEA. The low bound of the interval is a cut off value for a good fit. That is, if the 
low bound of RMSEA is smaller than 0.05, the good fit null hypothesis cannot be rejected. 
Thus, the model has a close approximate fit in the population. On the other hand, the upper 
boundary is a cutoff value of poor fit. That is, if the upper value of the interval exceeds a 
cutoff value for a poor fit, such as 0.10, the poor fit null hypothesis cannot be rejected. Thus, 
an upper bound value larger than 0.10 indicates poor fit.  

For this study the boundaries of the 90% confidence interval are at 0.030 and 0.039. 
The lower boundary is smaller than 0.05, and the upper bound is smaller than 0.10. The null 
hypothesis of poor fit is rejected indicating it is not a poor fit. Thus, the 90 % Confidence 
Interval for RMSEA index concludes this model is a good fit in the population.  
 
Comparative Fit Index  

Comparative Fit Index (CFI), Relative Fit Index (RFI), and Incremental Fit Index (IFI) 
assess the relative improvement in fit of the model compared with a baseline model or a null 
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model. In general, values greater than roughly 0.90 indicate reasonably good fit of the 
researcher’s model. In this study, the model shows high comparative fit indices; CFI = 0.99, 
IFI = 0.99, and RFI = 0.99, and thus indicate a good fit of the model.  
 
Root Mean Square Residuals  

The Root Mean Square Residual (RMR) is a measure of the mean absolute value of 
the covariance residuals. RMR = 0 indicates a perfect model fit, and the higher the value is, 
the worse the fit is. The Standard Root Mean Square Residual (SRMR) transforms the 
covariance matrices (unstandardized) into correlation matrices (standardized) and measures 
the mean absolute correlation residual. Values of the SRMR less than 0.10 are considered 
reasonable fit. The RMS and SRMS of the initial model are 0.0027 and 0.0021, respectively, 
supporting a good fit of the initial model.  

In summary, the indices of overall model fit demonstrate a mixed outcome. The t-tests 
of factor loadings show reasonable associations between the latent factors and the observed 
variables, but the standard residuals show several high values suggesting the necessity of 
model respecification. In overall model fit evaluation, the p value of the model chi-square is 
far lower than the cut off value indicating bad fit of the model. However, all other indices 
including indicate a reasonable fit.  

As a result, it is necessary to respecify the model. The current specifications regarding 
the association between the latent variables and the observed variables are kept. However, the 
several measurement errors are set to covary to reduce the unusually high standard residuals.  
 

Respecified Model 
 
The respecified model has some measurement error set free to allow them to covary. 

The covariance of measurement errors reduces the large standard residuals in the initial model. 
This change is theoretically and statistically appropriate. In language theories, listening is 
considered as a complex cognitive process engaging several sources of knowledge (Bachman, 
1990; Bachman & Palmer 1996; Buck, 2001). Linguistic knowledge is one of many factors 
affecting the listening abilities of test takers. As this study examines only two factors, it is 
reasonable to postulate that other factors treated as errors might be correlated. Statistically, the 
allowance of error covariance reduces the chi-square indices and produces a better model fit. 

 The following 15 measurement errors are set to covary in the respecified model: 
COV(x4, x3), COV(x5, x3), COV(x7, x5), COV(x8, x6) , COV(x9, x3), COV(x8, x3), COV(x11, x9), 
COV(x11, x2), COV(x12, x8), COV(x13, x8), COV(x13, x6), COV(x13, x12), COV(x14, x4), 
COV(x14, x8), and COV(x14, x9).  
 
Identification of the Respecified Model 

First, the model is again examined for a unique solution for the parameter coefficients. 
The respecified model has 44 free parameters to identify. The t-rule for model identification 
(with q observed variables, t  ½(q)(q+1)) shows that the respecified model is identifiable. 
The number of free parameters (t) is 45, less than 105 (½*14*15) known-to-be-identified 
elements. Thus, the t-rule is satisfied, and the respecified model is uniquely identifiable. 
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Estimations of the Respecified Model  
LISREL is used to analyze the respecified parameter estimates. See Table 8 for the 

values and Figure 1 for the path diagram of the resulting estimates. The estimations use the 
unit variance identification (UVI), where the variances of latent variables are set to 1.00. The 
variance of latent variables is 0.85, an increase of 0.02 from the initial model.  
 

 
 
Figure 1. Path Diagrams of the Respecified Model Estimates 
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Table 8.  Estimates of the Respecified Model 

Factor loadings (LAMBDA-X)  Measurement Errors  

 F1( 1) F2 t-value   (THETA-DELTA) 

x1 0.79 - 37.09  VAR( 1) 0.60 

x2 0.71 - 33.41  VAR( 2) 0.64 

x3 0.81 - 34.28  VAR( 3) 0.74 

x4 1.06 - 39.86  VAR( 4) 0.85 

x5 0.77 - 37.63  VAR( 5) 0.63 

x6 0.77 - 37.63  VAR( 6) 0.54 

x7 0.77 - 39.40  VAR( 7) 0.46 

x8 0.62 - 28.66  VAR( 8) 0.71 

x9 0.87 - 40.37  VAR( 9) 0.55 

x10 0.80 - 32.74  VAR( 10) 0.86 

x11 - 0.89 35.69  VAR( 11) 0.61 

x12 - 0.59 26.49  VAR( 12) 0.68 

x13 - 0.88 29.48  VAR( 13) 0.95 

x14 - 0.57 28.07  VAR( 14) 0.56 
 

Covariance of Measurement Errors 

Error covariance  t-value Error covariance  t-value 

COV(x4, x3) 0.08 3.82  COV(x12, x8) -0.04 -2.71 

COV(x5, x3) 0.07 3.99  COV(x13, x8) -0.10 -5.17 

COV(x7, x5) -0.03 -2.40  COV(x13, x6) 0.06 3.14 

COV(x8, x6) 0.07 3.91  COV(x13, x12) 0.08 3.34 

COV(x9, x3) -0.06 -3.75  COV(x14, x4) -0.05 -3.14 

COV(x8, x3) 0.07 3.91  COV(x14, x8) -0.07 -4.36 

COV(x11, x9) 0.04 2.20  COV(x14, x9) 0.03 2.12 

COV(x11, x2) -0.05 -3.19     

 
Factor variances and covariance (PHI) 

11 1.00 
21 0.85 
22 1.00 
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Evaluation of the Respecified Model  
The factor loading parameters of the respecified model show large effect sizes for both 

latent factors. The standardized path coefficients with absolute values less than 0.10 may 
indicate a “small” effect, values around 0.30 a “typical” or “medium” effect; and with 
absolute values greater than 0.50 a “large” effect (Cohen, 1988 cited in Klein, 2005).  

The parameter evaluations of the respecified model include both the significant tests 
of factor loadings and the standardized residuals. The t-values (see Table 8) are all higher than 
3.291, indicating significant association between the observed variables and the latent factor 
variables. The standardized residual matrix improved, with only three values larger than 2.00, 
and the largest absolute value being 3.24.  

The overall model fit improves significantly in terms of the chi-square test (see Table 
9). Other indices indicate a good fit of the respecified model. Based on the evaluation of the 
respecified model, it is accepted as evidence to support the hypothesis.  
 
 
Table 9.  Goodness of Fit Statistics of the Respecified Model 
Indices Value  Evaluation  

Degrees of Freedom 61  

Minimum Fit Function Chi-Square 79.40  

P-value of chi-square ( 2
M) P = 0.051 Good fit 

Root Mean Square Error of Approximation (RMSEA) 0.012 Good fit 

90 Percent Confidence Interval for RMSEA (0.0 ; 0.019) Good fit 

Comparative Fit Index (CFI) 1.00 Good fit 

Incremental Fit Index (IFI) 1.00 Good fit 

Relative Fit Index (RFI) 1.00 Good fit 

Root Mean Square Residual (RMR) 0.014 Good fit 

Standardized RMR 0.011 Good fit 

 
Discussion 

 
Second language listening is a complex cognitive process involving various 

knowledge sources. The various knowledge sources required for listening can explain high 
variances and the medium level of squared multiple correlations of the variables. The 
significant tests show that all factor loading coefficients are significant at the critical level of p 
= 0.01 as their p values exceeded 3.29. However, the variances of each variable are also 
significantly high.  

The squared multiple correlations (SMC) of variables, which indicate the variance 
proportions explained by the factors, range in the medium levels. The complex nature of 
listening constructs may account for the medium degrees of SMCs. The language knowledge 
and comprehension factors are two of several knowledge sources engaged in listening. The 
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effects of other sources, such as background knowledge, are not included in this study and 
may contribute to the variances observed in the variables. In addition, other test method 
features may have not been represented by the two factors. Those features may also contribute 
to the values of variances and the medium size of SMCs.  

The complexity of listening constructs may account for the covariance of 
measurement errors in the respecified model. In model respecification, the factor associations 
have not changed, but the measurement errors are specified to covary. The covariance of 
measurement errors represents that the unique variances of the variables are not unique but 
correlated with the unique variance of other variables. The covariance of measurement errors 
indicates the possibility of common factors other than language knowledge and 
comprehension factors between the variables of covarying measurement error. Considering 
the complex nature of listening, it is theoretically plausible to assume factors other than the 
two factors that are specified in this model of listening constructs exist.  

The above explanations about the covariance of measurement errors are largely 
speculative. However, the presence of error covariance is theoretically grounded in the fact 
that listening is a complicated process involving more factors than the two factors highlighted 
in this study. This calls for further research to investigate other aspects of listening constructs.
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