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Abstract
Sparse-rated data are common in operational performance-based language tests, as an inevitable 
result of assigning examinee responses to a fraction of available raters. The current study 
investigates the precision of two generalizability-theory methods (i.e., the rating method and the 
subdividing method) specifically designed to accommodate the technical complexity involved in 
estimating score reliability from sparse-rated data. Examining the estimation precision of reliability 
is of great importance because the utility of any performance-based language test depends 
on its reliability. Results suggest that when some raters are expected to have greater score 
variability than other raters (e.g., a mixture of novice and experienced raters being deployed in 
a rating session), the sub-dividing method is recommended as it yields more precise reliability 
estimates. When all raters are expected to exhibit similar variability in their scoring, both the 
rating and sub-dividing methods are equally precise in estimating score reliability, and the rating 
method is recommended for operational use, as it is easier to implement in practice. Informed 
by these methodological results, the current study also demonstrates a step-by-step analysis for 
investigating the score reliability from sparse-rated data taken from a large-scale English speaking 
proficiency test. Implications for operational performance-based language tests are discussed.
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Expert-rated assessments of actual language test performances are common in many con-
texts, such as academic departments at universities that use language placement tests to 
assess incoming students, regional and national governments that administer language pro-
ficiency tests to measure student growth, and large-scale language testing programs that 
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offer academic and workplace qualifications. The advent of performance-based tests is 
partly driven by validity concerns regarding the extent to which assessment tasks resemble 
real-world tasks and the degree to which test performances can be generalized to target lan-
guage use in non-test contexts (Bachman & Palmer, 1996; Chapelle, Enright, & Jamieson, 
2008), which are in accord with the modern paradigm of test validation (Kane, 2006).

Given the emphasis on performance tests, rater-mediated measurement has become 
typical in many language assessment contexts. Many testing programs continue to rely 
on a time-honored scoring paradigm: expert raters with rigorous training and calibration. 
However, scoring performance by human raters comes with a set of stress factors. For 
example, even in a well-designed rating system, certain practical realities might mitigate 
the effectiveness of rater training, such as time pressure as a result of a short turnaround 
timeline for scoring. Furthermore, some raters may be unavailable when they are needed, 
forcing test administrators to use a smaller pool of trained raters or to turn to a wider pool 
of former raters, some of whom have not been fully or recently re-calibrated. All of these 
factors result in score fluctuation for reasons other than the intended construct being 
measured, thereby affecting the reliability of the scores.

Score reliability in rater-mediated measurement is defined as the extent to which 
raters are consistent in giving scores across the object of measurement (e.g., examinees 
or persons), according to a rating rubric (Stemler & Tsai, 2008). Rater-mediated meas-
urement is a product of raters’ understanding of the intended construct being measured, 
their interpretations of the rating rubric, and their use of the rubric in making their judg-
ments. High reliability is desirable so that score interpretations can be trusted (AERA, 
APA, & NCME, 2014). This paper investigates the precision of different methods in 
estimating score reliability from sparse-rated data. The following two sub-sections intro-
duce the different analytical methods and give a brief description of sparse-rated data. 

Generalizability theory

Language-testing researchers can estimate the relative magnitude of construct-irrelevant 
variability in rated-test scores and factor the variability into the estimation of score reli-
ability. Moreover, they can identify which construct-irrelevant factors (such as different 
raters or different tasks – things that should not contribute to score variations) account for 
the overall construct-irrelevant variability. They can do this by using a measurement 
model called generalizability theory or G theory (Brennan, 2001; Cronbach, Gleser, 
Nanda, & Rajaratnam, 1972), which is a powerful analytical framework. G theory is a 
random facet measurement model that conceptualizes observed score variability as a 
composite of the true variation in the object of measurement and other variations pertain-
ing to different measurement sources (called facets in G-theory terminology) that are 
anticipated by or are of interest to an investigator. Essentially, G theory decomposes total 
score variability, via statistical techniques such as analysis of variance, Bayesian infer-
ence (e.g., Davis, 1974), and latent variable modeling (e.g., Schoonen, 2005), into vari-
ance components associated with the object of measurement and with various facets 
involved in the measurement. This decomposition provides information about how much 
variation is explicable by each component. For instance, in a speaking test for a group of 
English as a second language (ESL) students, the object of measurement is students’ 
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speaking proficiency. One potential source of score variation is variability introduced by 
different raters scoring the responses. Ideally, one would like to see true differences 
among students’ speaking proficiency reflect observed score variability as much as pos-
sible, not differences due to raters.

Sparse-rated data as a given in operational settings

The full potential of G theory is realized when fully crossed designs are employed. For 
example, a fully crossed p r×( )  design requires that each examinee or person (p) be 
rated by all available raters (r). A fully crossed design is ideal in that it allows G-theory 
analysis to separately assess variability due to the main and interaction effects of the 
object of measurement and the facets of interest, resulting in more straightforward analy-
sis of variance components, which in turn aids the interpretation of score reliability. The 
relationship between variance components and score reliability is illustrated below by a 
one-facet random effect model under the G-theory framework:

	 X pr p r pr e= + + +µ α β ε , , 	 (1)

where the score ( X pr ) of person p given by rater r is the sum of an overall mean (µ) and 
the three components pertaining to persons (α ), raters ( β ), and errors ( ε ). Observed 
score variability due to the three components is represented by the estimated variance 

components σ p
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2 , respectively. Generally, score reliability is interpreted in 

an absolute sense (Brennan, 2001) in performance-based assessments because the rating 
rubrics on which examinee responses are scored are usually criterion-based, describing 
the skills and performances associated with different levels of proficiency. For the abso-
lute interpretation of score reliability under the G-theory framework, the estimated phi-
coefficient or generalizability coefficient for absolute decisions (Cronbach et al., 1972) 
may be presented as:
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where ′nr  refers to the number of ratings per examinee response. Equation (2) shows an 
inverse relationship between score reliability and score variability owing to measure-
ment facets; that is, all else being equal, the higher the estimated variance components 
associated with raters and/or errors are, the lower the estimated phi-coefficient becomes. 
This relationship is clear when these variance components can be estimated indepen-
dently of one another, which is one of the main advantages of working with fully crossed 
datasets.

In an operational performance-assessment setting, fully crossed designs are not practi-
cal, and may be impossible, due to the tremendous number of ratings such designs require 
each rater to perform (Lee, 2006). Alternatively, many testing programs resort to a 
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double-rating scheme, by which each examinee response is rated by any two raters from a 
rater pool, resulting in sparse data (Chiu, 2001; DeMars, 2015). Figure 1 shows an example 
of fully crossed rated data in an ideal situation and an example of sparse-rated data with a 
double-rating scheme from 60 persons/examinees (P1–60) and four raters (R1–R4).

Language testers know the clear advantages of working with fully crossed designs, but 
such designs are rare or even non-existent in operational testing programs. When testers 
have sparse performance-based data, they can use two existing analysis-of-variance 
(ANOVA) methods under the G-theory framework. Both methods take sparse-rated datasets 
as a given and transform them into some variants of fully crossed ones. In the first method, 
ratings are treated as a random facet; henceforth referred to as the rating method. In the 
second method, raters are treated as a random facet; henceforth referred to as the sub-divid-
ing method (Chiu, 2001). Figure 2 gives a visual representation of how the two methods 
break down a hypothetical sparse dataset, in which each response from 80 persons/exami-
nees (P1–P80) is double-rated among a panel of four raters (R1–R4), into fully crossed 
dataset(s). As such, the rating method forces a sparse dataset into a fully crossed one by 
treating individual ratings, irrespective of which raters, as a random facet. For example in 
Figure 2, the rating method transforms the 80-by-4 sparse data matrix into an 80-by-2 fully 
crossed dataset. The variance components and score reliability are then estimated based on 
the transformed fully crossed data (see Shavelson & Webb, 1991, p. 29, for variance-com-
ponent estimation). The sub-dividing method first identifies a total of four blocks of fully 
crossed sub-datasets in this example. Next, variance components are estimated within each 
block, and these variance-component estimates are then averaged across the four sub-data-
sets by giving weights according to the number of examinees in each block. Score reliability 
is then calculated based on the average estimated variance components.

Both methods have been applied to analyze sparse-rated data from performance-based 
language tests. For instance, the rating method has been applied in a university Spanish-
as-a-foreign-language placement test (Bachman, Lynch, & Mason, 1995), in an English 
achievement test for secondary-school ESL students (Huang, 2012), and in an English 
language test for immigration purposes (Lynch & McNamara, 1998). The sub-dividing 
method has been applied in a large-scale English language proficiency test (Xi, 2007).

In an operational setting with a double-rating scheme, a testing program can adopt a 
highly standardized design, by which examinees are assigned to fixed pairs of non-overlap-
ping raters. DeMars (2015) clarified that raters can be treated as nested within examinees 

Figure 1.  Illustrative examples of fully-crossed data and sparse data, where “P” refers to 
person/examinee, “R” refers to rater, “X” refers to a complete set of ratings awarded to a 
group of examinees by a rater, and “.” refers to missing data by design.
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r p:( ) , only if each examinee is assigned to a unique rater pair (i.e., no sharing of raters 
across rater pairs). This conceptualization of raters being nested within examinees is in line 
with the definition of nested structure given by Shavelson and Webb (1991, p. 46). However, 
it would be more practical to have some overlapping raters between the rater pairs in an 
operational setting. Alternatively, a testing program can employ a more flexible design that 
allows some sharing of raters across rater pairs. In such a scenario, DeMars (2015) indi-
cated that the correct model specification is that raters being crossed with examinees are 
nested within rater pairs r p pair×( )( ): . The notion of a complete crossing of rater-by-
person within each rater pair would suggest that either none or one member of a rater pair 
may overlap with those from other rater pair(s). DeMars further investigated the bias in 
estimating variance components due to the mis-specification of r p:( ) , when in fact 
r p pair×( )( ):  should have been the correct model for cases where there is some sharing 

of raters between the rater pairs. Results suggested that the degree of bias is small in large-
scale contexts, such as state or national assessment programs. Finally, DeMars’ study 
briefly touched on the estimation precision of the G-theory models with respect to less 
standardized rating designs (e.g., each examinee was randomly assigned to two raters from 
a rater pool), and it pointed to the lack of such research. The current study extends this line 
of research by focusing on sparse-rated data as a result of assigning each examinee to ran-
domly paired raters (i.e., no fixed grouping of raters is formed). Such less standardized 
designs are more convenient and manageable in operational settings (Chiu & Wolfe, 2002; 
F. Davidson, pers. com., December 2012; J. Banerjee, pers. com., January 2015).

The current study contributes to research on the estimation precision of G-theory 
methods in handling sparse data (Chiu & Wolfe, 2002; DeMars, 2015) in three ways. 

Figure 2.  A visual representation of two methods to transform sparse data into fully crossed 
dataset variants: the rating method and the sub-dividing method.
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First of all, in addition to large-scale sample sizes, the current study also includes smaller 
sample sizes that may be of interest to many institutional language-placement testing 
programs. Second, rather than investigating the precision of variance-component esti-
mates, the current study evaluates the precision of reliability estimates because the prac-
tical significance of bias in variance-component estimates, if any, may not easily be 
observable compared with bias in reliability estimates. It is true that if variance-compo-
nent estimates are precise, so will be the case for reliability estimates; nevertheless, 
because reliability is the ratio of variance components, a slight estimation bias in a vari-
ance component or a substantial bias in a variance component of small magnitude may 
not bear much practical significance in the estimation of reliability. Finally, the current 
study attempts to evaluate the estimation precision of the rating method and of the sub-
dividing method determined for sparse-rated data from less standardized rating designs. 
These two ANOVA-based methods have an advantage over other more advanced estima-
tion methods (e.g., restricted maximum likelihood estimation and minimum variance 
quadratic unbiased estimators) for handling sparse-rated data, as the advanced methods 
may not be practical when the rater pool is large in operational settings (DeMars, 2015). 
To the author’s knowledge, the rating method and the sub-dividing method are the two 
methods specifically designed to accommodate the technical complexity involved in 
estimating score reliability by transforming sparse-rated data into readily analyzable 
dataset(s) for the classic G-theory software, GENOVA (Crick & Brennan, 1982). In other 
words, the two methods are more accessible to language testers who work with sparse-
rated data but who may not have the resources to utilize more advanced methods. Because 
of their accessibility and wide use in many operational language-testing contexts, 
research that sheds light on the precision of the rating method and of the sub-dividing 
method in estimating reliability is of great importance.

The current study

Language testers have both the rating and sub-dividing methods at their disposal in 
examining score reliability from sparse-rated data in performance-based assessments. 
Both methods have been applied in the field of language testing, and both seem to be 
satisfactory for the purpose of estimating score reliability. The two methods may yield 
similar estimates of score reliability from the same sparse dataset in some contexts; 
however, given that the two methods differ not only in the specification of the random 
facet but also in the estimation procedures of variance components, the results from the 
two methods may not always converge. When the estimates of score reliability differ, a 
natural follow-up question is which estimate to report. Without knowing the true relia-
bility in any operational contexts, choosing the higher estimate may run the risk of 
falsely inflating score reliability when in fact the lower estimate is more precise, 
whereas choosing the lower estimate may unduly underestimate score reliability when 
the higher estimate is actually more precise. This is an operationally driven question, 
but it cannot be answered empirically by using operational data at hand because the true 
reliability is not known from operational data, and therefore an investigator has no way 
of knowing which estimate is more reflective of the true reliability. In light of this, the 
current study aims to:
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•• investigate rating condition(s) under which one method is recommended over the 
other via a simulation study; and

•• demonstrate how this methodological research can guide the design of an analysis 
plan for examining the score reliability of a large-scale English speaking profi-
ciency test.

The current study is method oriented and yet has real-world implications for language 
testers who work with rated performance data in that it offers methodological recom-
mendations for analyzing sparse-rated data from language performance tests. 
Additionally, it demonstrates how the analysis plan for an empirical inquiry can be 
informed by simulation research.

Method

In order to address the issue of not being able to determine operationally the precision of 
different reliability estimates based on different estimation methods, the current study 
conducted a Monte Carlo simulation study to compare the estimation precision of the 
rating method and the sub-dividing method. The comparison is possible because the true 
reliability is predetermined and therefore known in simulation research, against which 
estimated score reliability based on the two methods can be evaluated. My aims in con-
ducting this simulation study are twofold. First, I sought to evaluate the precision of the 
rating method and the sub-dividing method in estimating score reliability under various 
simulated conditions, whose designs are informed empirically. Second, I used results 
from the simulation study to guide the analysis plan for investigating score reliability of 
the speaking component of the Examination for the Certificate of Proficiency in English 
(ECPE) from CaMLA (Cambridge Michigan Language Assessments: www.cam-
bridgemichigan.org).

Simulated conditions

One advantage of using simulation procedures to investigate estimation precision is that, 
instead of operating under a single operational setting in which an empirical study is usu-
ally carried out, investigators can purposefully choose simulated conditions that are 
informed by multiple realistic settings, providing useful implications for a wider audi-
ence of practitioners in diverse contexts. The current simulation study included three 
examinee sample sizes ( np ) (80, 360, and 1600), three rater-pool sizes ( nr ) (4, 8, and 
16), two compositions of variance components, and two scenarios of rater score variabil-
ity, amounting to a total of 36 conditions.

Variance-component compositions.  The two variance-component (VC) compositions were: 
(a) 65%, 5%, and 30% of total score variance is accounted for by persons, raters, and 
errors, respectively, and (b) 25%, 35%, and 40% of total score variance is due to persons, 
raters, and errors, respectively. The true reliability for VC composition (a) is expected to 
be higher than that for VC composition (b), because the relative magnitude of construct-
irrelevant score variability (i.e., raters and errors) for VC composition (a) is smaller than 

www.cambridgemichigan.org
www.cambridgemichigan.org
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that for VC composition (b). This setup allows the simulation study to evaluate the preci-
sion of the rating method and of the sub-dividing method in estimating a range of score 
reliability.

Rater scenarios.  The two rater scenarios were as follows: (i) all raters exhibit similar vari-
ability in their scoring, corresponding to raters having similar training and/or rating 
experience; and (ii) some raters have greater score variability than others, reflecting real-
istic settings in which a mixture of novice and experienced raters are deployed in a single 
rating session.

True parameters of variance components.  The relative magnitude of the variance compo-
nents for VC composition (a) was informed by previous G-theory research on speaking 
assessments (Akiyama, 2001; Bachman et al., 1995; Lynch & McNamara, 1998; Xi, 
2007). In these studies, a large proportion of score variability is due to persons, a small 
proportion of score variability is accounted for by raters, and some variability is expected 
for measurement errors; this pattern is also reported in a research synthesis by In’nami 
and Koizumi (2015). It must be emphasized that in a simulation study, true parameters 
are selected from values that seem reasonable according to previous research (Mooney, 
1997). Some G-theory simulation studies adopted values from a single empirical study 
(e.g., Nugent, 2009) .The current study attempts to arrive at reasonable relative magni-
tudes of variance components by taking the averages across the aforementioned studies 
in speaking assessments. The average total score variance across these studies was 1.123 
after accounting for scale differences. Given the VC composition (a), this translates to 
0.730 (65%) for σ p

2 , 0.056 (5%) for σ r
2 , and 0.337 (30%) for σ e

2 . In these published 
research studies, the relative magnitude of score variability attributed to raters is usually 
small due to rigorous rater training. However, it would be informative for the current 
simulation study to also consider situations in which raters are not fully trained and are 
therefore likely to exhibit a larger relative magnitude of variance component. VC com-
position (b) mirrors such a context, where σ p

2 =  0.281 (25%), σ r
2 =  0.393 (35%), and 

σ e
2 =  0.449 (40%).

Sparse-data generation

Data associated with rater scenario (i) were simulated according to Equation (1). Take 
VC composition (a) as an example. The score ( X pr ) of person p given by rater r is the 
sum of an overall mean (µ) and the three random components pertaining to persons, 
raters, and errors. These three random components were generated independently from 
three normal distributions, where the person effect (α p ), the rater effect ( βr ), and the 
error component ( ε pr e, ) followed a normal distribution with a mean of zero and variance 
of σ p

2 = 0.730 (65%), σ r
2 = 0.056 (5%), and σ e

2 = 0.337 (30%), respectively. Data were 
simulated to be scored on a scale of 0 to 4 by setting the overall mean (µ) at 2. The true 
reliability (or phi-coefficient) is then calculated by plugging the true parameters of these 
variance components and the rater-pool size into Equation (2). The same procedures 
were applied to generate data for VC composition (b), except that the three random 
effects followed a normal distribution with a mean of zero and variance of σ p

2 = 0.281 
(25%), σ r

2 = 0.393 (35%), and σ e
2 = 0.449 (40%), respectively.
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Data associated with rater scenario (ii) were also simulated according to Equation (1) 
for VC compositions (a) and (b). Nevertheless, what was different in rater scenario (ii) 
lay in the true parameter for the rater variance component, such that the variability in 
scoring for novice raters was simulated to be two times larger than that for experienced 
raters. The idea that larger score variability is associated with novice raters was taken 
from empirical observations, which found that inexperienced raters appeared to be less 
consistent in their scoring than experienced raters (Weigle, 1998, 1999). Two raters 
were designated as novice raters across the simulated conditions under rater scenario 
(ii); as a result, novice raters constituted 50%, 25%, and 12.5% of the rater pools for nr  
= 4, 8, and 16, respectively.1

Next, I imposed two realistic constraints on data generation to create sparseness in the 
simulated data. First, randomly paired raters from the rater pool were assigned to each 
examinee (i.e., random double-rating scheme). Second, all raters shared an equal amount 
of scoring load. Given these two constraints, the levels of sparseness were directly linked 
to the rater-pool sizes ( nr ) in the simulated conditions. Taking np = 1600 and nr = 16 as 
an example, a fully crossed 1600-by-16 dataset with complete data was first generated. 
The first examinee was assigned to two randomly paired raters out of the 16 raters, and the 
first examinee’s simulated data associated with the other 14 raters were then removed. 
The same procedures were applied to the second examinee, and the first and/or the second 
rater in this rater pair could be the same or different from those in the rater pair for the first 
examinee because of random pairing of rater. For each examinee, the random rater pairing 
was carried out with the constraint of equal scoring load for each rater. As such, for each 
examinee in the examinee-by-rater matrix, data associated with 14 out of 16 raters were 
missing, which resulted in a sparse level at 87.5% (14/16). The three rater-pool sizes (i.e., 
4, 8, and 16) corresponded to sparseness of 50% (2/4), 75% (6/8), and 87.5% (14/16), 
respectively. In operational settings, the examinee-by-rater data matrix is expected to be 
very sparse, particularly when the pool of raters is large (Chiu, 2001; DeMars, 2015).

Evaluation of estimation precision

I evaluated the estimated score reliability (or phi-coefficient), based on the rating method 
and the sub-dividing method, against the true reliability by examining the average bias 
over 5000 replications of sparse datasets for each of the 36 simulated conditions. It is the 
randomness involved in the data generation described in the previous section that allows 
the current simulation study to replicate each simulated condition for a large number of 
times in order to gauge the precision of these two methods in estimating score reliability. 
Bias here is defined as the extent to which an estimate deviates from its true parameter; 
hence, the lower the bias is, the higher the estimation precision will be. For a true phi-
coefficient (Φ ) associated with a particular simulated condition, the average bias of its 
estimated phi-coefficient (Φ ) was obtained by

	 averagebias = −( )
=
∑1

5000
1

5000

h

hΦ Φ , 	 (3)

where h  refers to the h th replication. Comparisons between the two methods were 
made possible by their respective estimation procedures being performed on the same 
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sparse data per simulated condition. Using the R statistical software, version 2.15.2, I 
carried out the data generation and score reliability estimation. 

Simulation results

Results based on VC composition (a)

Tables 1 and 2 are associated with VC composition (a), in which the relative magnitude 
of score variability due to raters is small, and therefore the true reliability is expected to 
be high. The two tables present averages and average biases of estimated phi-coefficients 
across the nine combinations between the examinee sample sizes and the rater-pool sizes 
( 3 3× ). Each rater-pool size is followed by its true phi-coefficient in each simulated 
condition. Within each row of np , the upper row shows results from the rating method. 
The lower row represents those from the sub-dividing method.

Table 1 shows results based on rater scenario (i), where raters are expected to have 
similar training and/or experience. The results show that the two methods yield very 
similar score reliability estimates that are also close to their respective true phi-coeffi-
cients. For instance, in the case where np = 360 and nr = 8 in Table 1, the estimated phi-
coefficient is 0.9361 based on the rating method and is 0.9363 based on the sub-dividing 
method, which both converge to the true phi-coefficient at 0.9369. As a result, the aver-
age bias of each estimated reliability from the two methods does not differ much from 
each other and is fairly small, suggesting that the two methods are equally precise in 
estimating score reliability when raters are expected to have similar score variability.

Table 2 presents results based on rater scenario (ii), which reflects situations where a 
mixture of novice and experienced raters participate together in scoring. Similarly, the 
results show that the estimates of score reliability based on either the rating or the sub-
dividing method are fairly close to their corresponding true phi-coefficients. For exam-
ple, in the case where np = 80 and nr = 4 in Table 2, the estimated score reliability is short 
by only 0.0033 on average based on the rating method, and is short by only 0.0022 on 
average based on the sub-dividing method. Moreover, as expected, when holding the 
rater-pool size constant, the magnitude of average bias decreases as the number of 

Table 1.  Estimated phi-coefficient: Rating method (upper) vs. sub-dividing method (lower) 
based on VC composition (a) and rater scenario (i).

np Rater pool = 4  
(True Phi = .8814)

Rater pool = 8  
(True Phi = .9369)

Rater pool = 16  
(True Phi = .9674)

Average phi Average bias Average phi Average bias Average Phip Average bias

80 .8760 −.0054 .9335 −.0034 .9656 −.0018
.8764 −.0049 .9338 −.0031 .9658 −.0016

360 .8803 −.0010 .9361 −.0009 .9670 −.0005
.8807 −.0006 .9363 −.0006 .9670 −.0004

1600 .8809 −.0004 .9366 −.0003 .9674 ≈.0000
.8814 ≈.0000 .9367 −.0002 .9674 ≈.0000
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examinees increases. For example. When nr  = 4, the average bias based on the rating 
and sub-dividing methods changes from −0.0033 and −0.0022 to −0.0005 and 0.0004, 
respectively, as np  increases from 80 to 1600. In sum, the rating method and the sub-
dividing method perform equally well in estimating score reliability when the relative 
magnitude of score variability attributed to raters is small.

Results based on VC composition (b)

Tables 3 and 4 pertain to VC composition (b), in which the relative magnitude of score 
variability due to raters is large, and therefore the true reliability is expected to be low to 
medium. Again, within each row of np , the upper row presents results from the rating 
method, and the lower row shows those from the sub-dividing method.

Table 3 shows results based on rater scenario (i), where raters are expected to have simi-
lar training and/or experience. The results show that the sub-dividing method consistently 
has a slightly lower degree of average bias in estimating score reliability than the rating 
method, suggesting that the sub-dividing method is slightly more precise in this case; 

Table 2.  Estimated phi-coefficient: Rating method (upper) vs. sub-dividing method (lower) 
based on VC composition (a) and rater scenario (ii).

np Rater pool = 4  
(True phi = .8739)

Rater pool = 8  
(True phi = .9348)

Rater pool = 16  
(True phi = .9669)

Average phi Average bias Average phi Average bias Average phi Average bias

80 .8706 −.0033 .9321 −.0027 .9653 −.0016
.8717 −.0022 .9327 −.0022 .9654 −.0015

360 .8724 −.0016 .9335 −.0012 .9664 −.0004
.8735 −.0005 .9339 −.0009 .9666 −.0003

1600 .8734 −.0005 .9342 −.0006 .9666 −.0003
.8743 .0004 .9345 −.0003 .9667 −.0002

Table 3.  Estimated phi-coefficient: Rating method (upper) vs. sub-dividing method (lower) 
based on VC composition (b) and rater scenario (i).

np Rater pool = 4  
(True phi = .5714)

Rater pool = 8  
(True phi = .7273)

Rater pool = 16  
(True phi = .8421)

Average phi Average bias Average phi Average bias Average phi Average bias

80 .5760 .0045 .7217 −.0056 .8444 .0023
.5742 .0028 .7257 −.0015 .8407 −.0013

360 .5692 −.0022 .7290 .0017 .8396 −.0024
.5711 −.0003 .7269 −.0004 .8413 −.0008

1600 .5727 .0012 .7261 −.0012 .8409 −.0012
.5718 .0004 .7262 −.0010 .8418 −.0004
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however, the differences may not warrant much practical concern. For instance, in the case 
where np = 1600 and nr = 4 in Table 3, the rating method overestimates the true phi-coef-
ficient by 0.0012, whereas the sub-dividing method overestimates by 0.0004. Given the 
slight differences, the two methods can still be considered satisfactory in estimating score 
reliability when raters are expected to have similar variability in their scoring.

Nevertheless, the picture is less optimistic in Table 4, which presents results based on 
rater scenario (ii), reflecting situations in which some raters are expected to have more 
score variability than others. Clearly, the rating method considerably overestimates the true 
phi-coefficient across the simulated conditions, whereas the average bias based on the sub-
dividing method remains small. In some cases, the undue inflation of estimated reliability 
based on the rating method may raise practical concerns. For example, in the case where 
np = 360 and nr = 8 in Table 4, the rating method yields an average estimated phi-coeffi-
cient of 0.7968, whereas the sub-dividing method suggests 0.7031. If test-program direc-
tors decide to set a test’s minimum score reliability at 0.75 for quality control purposes, the 
use of the rating method will result in a false claim about acceptable score reliability, as the 
rating method indicates a higher estimated phi-coefficient at 0.7968 on average than the 
minimum score reliability at 0.75, when in fact the true phi-coefficient is 0.7048.

A further analysis revealed that the standard errors of variance-component estimates 
based on the rating method are generally larger than those based on the sub-dividing 
method, especially when the relative magnitude of rater variance is large. In sum, when 
the relative magnitude of score variability accounted for by the facet of raters is large, the 
sub-dividing method is more precise in estimating score reliability and more stable in 
estimating variance components than is the rating method, particularly when raters are 
expected to have varying degrees of score variability, such as a mixture of novice and 
seasoned raters rating together.

Empirical analysis plan informed by simulation results

According to the simulation results, the estimation precision of score reliability from the 
rating and sub-dividing methods is affected by the relative magnitude of score variability 
due to the facet of raters/ratings, such that when σ r

2  is relatively small, the rating and 

Table 4.  Estimated phi-coefficient: Rating method (upper) vs. sub-dividing method (lower) 
based on VC composition (b) and rater scenario (ii).

np Rater pool = 4  
(True phi = .5195)

Rater pool = 8  
(True phi = .7048)

Rater pool = 16  
(True phi = .8344)

Average phi Average bias Average phi Average bias Average phi Average bias

80 .6092 .0897 .8016 .0967 .8991 .0647
.5242 .0047 .7095 .0046 .8320 −.0024

360 .6031 .0837 .7968 .0919 .8983 .0639
.5212 .0017 .7031 −.0017 .8333 −.0010

1600 .6026 .0831 .7963 .0914 .8987 .0642
.5171 −.0024 .7037 −.0011 .8350 .0006
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sub-dividing methods are equally precise in estimating score reliability; however, when 
σ r
2  is relatively large, the sub-dividing method is more precise in estimating score relia-

bility. Although the true parameter of σ r
2  is not known from operational data, it can be 

estimated by σ r
2  from the data at hand. Thus, the design of an analysis plan for examining 

score reliability under the G-theory framework can be informed by gauging the magnitude 
of estimated variance component for raters/ratings (σ r

2 ). If it is small compared to the 
other estimated variance components, the rating method can be readily applied since it is 
as precise as the sub-dividing method but easier to carry out in practice. If σ r

2  is relatively 
large, the sub-dividing method would be a better choice in terms of estimation precision.

It must be emphasized here that in an operational setting with a double-rating scheme, 
the structure of sparse data can be complex. This is an inevitable result of assigning each 
examinee response to any two available raters. Each of the two methods discussed in this 
paper has practical constraints, but those associated with the sub-dividing method may 
be larger. Hence, as a preliminary screening tool for assessing the magnitude of σ r

2
, the 

rating method is recommended because its estimation procedures are relatively easy to 
implement. The following section provides a step-by-step example of an analysis, 
informed by the simulation results discussed so far, for investigating the score reliability 
of a large-scale English speaking proficiency test.

Speaking component of ECPE

The Examination for the Certificate of Proficiency in English (ECPE) was developed and 
is managed by CaMLA (Cambridge Michigan Language Assessments: www.cambridgemi-
chigan.org). It is a large-scale standardized test designed to assess the language proficiency 
of non-native English language speakers. Test results are used for professional and aca-
demic purposes. The speaking component of ECPE consists of a multi-stage speaking task. 
Two to three examinees participate in a single testing session. The examinees are asked to 
collaborate in presenting ideas and defending their stances. Each examinee is rated inde-
pendently by two trained raters on a holistic five-point scale. The two trained raters award 
a final speaking score by making a decision together. The holistic approach to scoring 
described in this paper was practiced until 2012. Since the time of this research, the ECPE 
Speaking Scale and scoring procedures have been revised. Raters apply an analytic 
approach to scoring and individually assign examinees a score of 0-5 on three criteria.

Three operational datasets from the speaking component of ECPE were analyzed in 
the current study. Each dataset included scores from speaking tests administered during 
one of the ECPE’s scheduled test administrations in 2012. Tasks A, B, and C were given 
to 1,999, 1,798, and 2,220 examinees, respectively. Each examinee response was rated 
by two raters. Given that each response was assigned to a fraction of raters from a pool 
of 345 raters, the three datasets constituted sparse data, to which both the rating and sub-
dividing methods are applicable.

Estimated variance components

Sample means, standard deviations, ranges, and coefficients of variation (CVs) of ECPE 
speaking tasks A, B, and C are reported in Table 5. For each speaking task, the CV is the 
ratio of the standard deviation of speaking scores to its corresponding mean, which 
serves as an index of score variation with respect to the mean. CVs function as a 

www.cambridgemichigan.org
www.cambridgemichigan.org
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descriptive tool for comparing score distributions from different sources, such as the 
three speaking tasks in the current analysis, that are intended to measure the same con-
struct. The descriptive statistics show that the means and standard deviations are similar 
across the three speaking tasks. In addition, the three CVs for tasks A, B, and C are 
almost identical at 0.228, 0.225, and 0.229, respectively. Given that the examinees were 
randomly assigned to the three speaking tasks and that the scoring was performed by 
equally qualified raters, similar descriptive statistics across the three speaking tasks sug-
gest that differences in task difficulty are negligible.

Next, the rating method was used as a preliminary screening tool to assess the relative 
magnitudes of different estimated variance components (i.e., persons, ratings, and errors) 
for each speaking task. Table 6 presents the estimated variance components and their 
proportions of total score variance based on scores from the ECPE speaking tasks A, B, 
and C. The results show that the compositions of estimated variance components across 
the three tasks are very similar in that the estimated variance component for persons 
(87.47%–87.84%) has the lion’s share, followed by the error component (12.06%–
12.49%) and then by the estimated variance component for ratings (0.04%–0.10%). 
About 87% of observed score variability in ECPE speaking can be accounted for by true 
differences in examinees’ oral proficiency. Moreover, the similarity in the patterns of 
estimated variance components resonates with the previous analysis of descriptive statis-
tics where the three tasks do not differ much in task difficulties.

Score reliability and standard errors of measurement

Methodologically, the simulation results in the previous sections suggest that when the 
relative magnitude of variance component for ratings is small, both the rating and 

Table 5.  Descriptive statistics of ECPE speaking scores by task.

Sample 
size

Total 
ratings

Mean Standard 
deviation

Min./Max. Coefficient of 
variation

Task A 1999 3998 3.061 .697 1/5 .228
Task B 1798 3596 3.092 .695 1/5 .225
Task C 2220 4440 3.019 .692 1/5 .229

Table 6.  ECPE speaking: Estimated variance components and proportions of total score 
variance by task.

Task A Task B Task C

  Estimated VC % of total 
variance

Estimated VC % of total 
variance

Estimated VC % of total 
variance

p .4275 87.84 .4229 87.47 .4203 87.61
r .0005 .10 .0002 .04 .0003 .07
e .0587 12.06 .0604 12.49 .0591 12.32
Total .4867 100 .4835 100 .4797 100
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sub-dividing methods are equally precise in estimating score reliability. Because the 
proportion of total score variance attributable to the estimated variance component for 
ratings is very small in the empirical analysis, it is therefore methodologically sound 
to proceed with the rating method in estimating score reliability of the speaking com-
ponent of ECPE. The estimated phi-coefficient in Equation (2) was computed based on 
the average estimated variance components across the three ECPE speaking tasks, and 
the estimated phi-coefficient was evaluated with respect to the number of ratings by 
varying the number of ratings from one to five. In addition to phi-coefficients, standard 
errors of measurement (SEMs) in the ECPE speaking component were also evaluated 
in relation to the number of ratings.

Phi-coefficients provide information about the extent to which awarded scores are 
reliable, while SEMs indicate the degree to which imprecision resides in awarded scores. 
Both pieces of information are useful in making decisions about the utility of perfor-
mance-based assessments (Brennan, Gao, & Colton, 1995). SEMs are computed as 
follows:

	 SEM =
′
+

′

σ σ 

r

r

e

rn n

2 2

, 	 (4)

where ′nr  refers to the number of ratings per spoken response.
Figure 3 shows the estimated phi-coefficients and SEMs with respect to the number 

of ratings for the speaking component of ECPE. As expected, reliability increases as the 
number of ratings increases, while imprecision in awarded scores decreases as the num-
ber of ratings increases. Figure 3 (a) indicates that the increase in reliability is larger 
when the number of ratings increases from one to two, but the improvement shrinks 
when two or more ratings are used. In a similar vein, the decrease in imprecision of 

Figure 3.  Phi-coefficients and SEMs of ECPE speaking.
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awarded scores is larger when the number of ratings increases from one to two in Figure 
3 (b). Additionally, Figure 3 (a) suggests that at least two ratings are required to achieve 
a reliability of 0.90 or higher for the ECPE speaking. This high reliability is necessary 
given the high-stakes use of ECPE in academic and workplace settings. Figure 3 (b) 
shows that when a single rating is employed, the SEM is expected to be 0.24 points, 
which translates to 0.96 points with a 95% confidence limit (equivalent to four SEMs). 
This suggests that the measurement errors in awarded scores, even with only one rating, 
are acceptable because the imprecision is not likely to be larger than one point on the 
five-point scale of ECPE speaking. In sum, although one rating is recommended from a 
precision perspective, two ratings are required on reliability grounds. As both reliability 
and precision are equally important in a high-stakes assessment such as the ECPE speak-
ing, taking both the phi-coefficient and SEM into consideration would suggest that at 
least two ratings are needed for operational use of the speaking component of ECPE.

Conclusion

High reliability in rater-mediated measurement is desirable so that raters can be consid-
ered interchangeable; that is, a score awarded will not be contingent upon any specific 
rater making the judgment. Nevertheless, one cannot assume that all individual raters in 
the rater pool are interchangeable even in a well-designed rating system. Estimation meth-
ods for score reliability are thereby needed to check this assumption for quality-control 
purposes. In the current study, I evaluated the precision of the rating method and the sub-
dividing method in estimating score reliability under the G-theory framework. I illustrated 
how simulation research can be useful in guiding the analysis plan for an operational 
inquiry. As such, I designed the simulation study with an eye toward reflecting realistic 
settings in performance-based language assessments, so that the results can inform opera-
tional analysis. Depending on the composition of variance components and the score vari-
ability across different raters, estimated score reliability can be different between the 
rating method and the sub-dividing method. When the relative magnitude of variance 
component for raters/ratings is small, the two methods are equally precise in estimating 
score reliability. Given that the rating method is much easier to implement in practice, the 
rating method is sufficient for operational use. However, when there is a sizeable variance 
component for raters/ratings, the rating method tends to inflate estimated reliability, par-
ticularly when raters are expected to have varying degrees of score variability; hence, the 
sub-dividing method is recommended for operational use in this case.

The theoretical foundation for both the rating and sub-dividing methods is built on de 
Finetti’s (1931) theorem of exchangeability, by which sequences of independent and 
identically distributed random variables are exchangeable given some underlying distri-
bution. In G theory, when the elements in a facet have not been sampled randomly from 
the universe of admissible observations but the intended universe of generalization is 
infinitely large, the facet can be treated as random and consequently the facet elements 
are assumed to be exchangeable even though they are fixed (Shavelson & Webb, 1981). 
In a rater-mediated assessment, when the relative magnitude of variance component  
for raters is small, treating the rater facet as random when they have not been sampled 
randomly does not matter. However, when the relative magnitude of rater variance 
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component is large, the impact of violating the exchangeability assumption seems to be 
more serious in the rating method than in the sub-dividing method, especially when 
raters are expected to have varying degrees of score variability and are thereby not 
exchangeable.

The simulation results informed the design of an empirical analysis of the speaking 
component of ECPE, following a step-by-step analysis plan. First, the rating method was 
used as a preliminary screening tool to evaluate the relative magnitude of score variabil-
ity due to ratings. Upon discovering that the estimated variance component for ratings is 
small, the empirical analysis followed the recommendation based on the simulation 
study and resorted to the rating method throughout the analysis. Empirical results sug-
gest that at least two ratings are necessary for operational use, in order to achieve satis-
factory score reliability and control for reasonable measurement errors for the speaking 
component of ECPE.

One important caution must be exerted in applying either the rating method or the 
sub-dividing method. Technically, both methods do not require missing data to be com-
pletely at random for the purposes of estimating variance components and computing 
phi-coefficients. However, if some random mechanism of examinee–rater distribution is 
not included in the assessment design, biased estimates may appear. For example, in an 
extreme case where examinee proficiency levels are dependent on rater characteristics 
(e.g., novice raters are always assigned to low proficient examinees), bias is very likely 
to be introduced into the estimated variance components, which will consequently result 
in biased reliability estimates. Although such extreme cases are not likely to occur in 
large-scale language scoring centers as random examinee-to-rater assignment is usually 
built into the scoring design, it should not be taken as a given.

Finally, the current study is limited to the comparison between two ANOVA-based 
methods in estimating score reliability from sparse-rated data under the G-theory frame-
work. Future research can compare these two methods with other more advanced 
approaches, such as structural equation modeling (SEM) and restricted maximum likeli-
hood (REML), in dealing with sparse-rated data (see Schoonen, 2005, for an SEM analy-
sis; see Bouwer, Béguin, Sanders, & van den Bergh, 2015, for an REML application). 
Additionally, while this study is based on a one-facet model in which raters/ratings were 
treated as a random facet, the scope can be further expanded into a two-facet model 
which includes speaking tasks as another facet as the most common facets involved in 
performance-based language assessments are those associated with tasks and raters (Lee, 
2006).
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Note

1.	 For rater scenario (ii), in which novice raters are expected to have greater score variabil-
ity than experienced raters, the true parameter σr exp( )

2
 for experienced raters followed the 

simulated value of 0.056 and 0.393 for VC composition (a) and VC composition (b), respec-
tively, while the true parameter σr nov( )

2  for novice raters was set to be twice of σr exp( )
2  at 

0.112 and 0.786. Because of the varying degree of score variability across the raters, the 
true parameters σ r2  for the overall rater variance component varies as the ratio of novice 
raters to experienced raters differs in each rater-pool size. The true overall rater variance 
component cannot be derived analytically; however, it can be approximated by simulations 
over a large number of replications. Take VC composition (a) and nr = 8 for example. To 
approximate the true parameter σ r2  by simulations, a dataset with no missing data was first 
generated according to Equation (1), with individual rater effects of the six experienced raters 
following N r exp( , . )0 0 0562σ ( ) =  and individual rater effects of the two novice raters following 
N r nov( , . )0 0 1122σ ( ) = . The overall variance component for the rater effect was then estimated 

from the full dataset. The above process was independently repeated 10,000 times in order 
to arrive at a stable approximation of the true parameter σ r2  by taking the average over the 
10,000 replications. The approximated true parameter σ r2  for the overall rater variance com-
ponent in VC composition (a) was 0.084, 0.070, and 0.063 for nr = 4, 8, and 16, respectively, 
and the approximated true parameter for the overall rater variance component in VC composi-
tion (b) was 0.590, 0.491, and 0.442 for nr = 4, 8, and 16, respectively.
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